1.访问和读取数据集
import hashlib
import os
import tarfile
import zipfile
import requests
DATA_HUB = dict()
DATA_URL = 'http://d2l_data.s3-accelerate.amazonaws.com/'
def download(name, cache_dir=os.path.join('..', 'data')):
'''下载一个DATA_HUB中的文件,返回本地文件名'''
assert name in DATA_HUB, f'{name} 不存在于 {DATA_HUB}.'
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname # 命中缓存
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
# 我们还需实现两个实用函数:一个将下载并解压缩一个zip或tar文件,另一个是将本书中使用的所有数据集从DATA_HUB下载到缓存目录中
def download_extract(name, folder=None):
'''下载并解压zip/tar文件'''
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False # 只有zip/tar文件可以被解压缩
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all():
'''下载DATA_HUB中的所有文件'''
for name in DATA_HUB:
download(name)
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
DATA_HUB['kaggle_house_train'] = (
DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = (
DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
正在从http://d2l_data.s3-accelerate.amazonaws.com/kaggle_house_pred_train.csv下载..\data\kaggle_house_pred_train.csv...
正在从http://d2l_data.s3-accelerate.amazonaws.com/kaggle_house_pred_test.csv下载..\data\kaggle_house_pred_test.csv...
(1, 1)
(1, 1)
代码运行出来是如上的结果,这应该是没有连上网站的缘故,于是直接到网站上把数据集下载下来了。
train_data = pd.read_csv(r'D:\Projects\2022\202203\data\train.csv')
test_data = pd.read_csv(r'D:\Projects\2022\202203\data\test.csv')
print(train_data.shape)
print(test_data.shape)
# 显示前四个和最后两个特征,以及相应标签(房价)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
(1460, 81)
(1459, 80)
Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000
# coding:utf-8
# coding:gbk
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from torch import nn
from d2l import torch as d2l
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
train_data = pd.read_csv(r'D:\Projects\2022\202203\data\train.csv')
test_data = pd.read_csv(r'D:\Projects\2022\202203\data\test.csv')
print(train_data.shape)
print(test_data.shape)
# 显示前四个和最后两个特征,以及相应标签(房价)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# 在每个样本中,第一个特征是ID,我们将其从数据集中删除
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
# 将所有缺失的值替换为相应特征的平均值,通过将特征重新缩放到零均值和单位方差来标准化数据
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 处理离散值。我们用一次独热编码替换它们
all_features = pd.get_dummies(all_features,dummy_na=True)
print(all_features.shape)
# 从pandas格式中提取Numpy格式,并将其转换为张量表示
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
# 训练
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features, 1))
return net
# 我们更关心相对误差,解决这个问题的一种方法是用价格预测的对数来衡量差异
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
# 我们的训练函数将借助Adam优化器
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
# K折交叉验证
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
# 返回训练和验证误差的平均值
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs], legend=['train', 'valid'], yscale='log')
print(f'fold {i + 1}, train log rmse {float(train_ls[-1])},'
f'valid log rmse {float(valid_ls[-1]):f}')
plt.show()
return train_l_sum / k, valid_l_sum / k
# 模型选择
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print(f'{k}-折验证:平均训练log rmse: {float(train_l):f},'
f'平均验证log rmse: {float(valid_l):f}')
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epochs', ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'train log rmse {float(train_ls[-1]):f}')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
plt.show()
train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)
(1460, 81)
(1459, 80)
Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000
(2919, 331)
fold 1, train log rmse 0.17120493948459625,valid log rmse 0.157195
fold 2, train log rmse 0.1620354950428009,valid log rmse 0.188530
fold 3, train log rmse 0.1635197550058365,valid log rmse 0.168446
fold 4, train log rmse 0.16816194355487823,valid log rmse 0.154599
fold 5, train log rmse 0.1628282219171524,valid log rmse 0.182788
5-折验证:平均训练log rmse: 0.165550,平均验证log rmse: 0.170312
train log rmse 0.162780