fzu 2035 Axial symmetry(枚举+几何)

题目链接:fzu 2035 Axial symmetry


题目大意:给出n个点,表示n边形的n个顶点,判断该n边形是否为轴对称图形。(给出点按照图形的顺时针或逆时针给出。


解题思路:将相邻两个点的中点有序的加入点集,即保证点是按照图形的顺时针或逆时针出现的,然后枚举i和i + n两点的直线作为对称轴。判断其他所有点是否对称即可。


 

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>



const int N = 1005;

const double eps = 1e-9;



struct point {

	double x, y;

	void get() {	scanf("%lf%lf", &x, &y); }

	void set(double a, double b) { x = a, y = b; }

	bool operator == (const point& c) {

		return fabs(x - c.x) < eps && fabs(y - c.y) < eps;

	}

}p[N];



int n, vis[N];



void init() {

	scanf("%d", &n);

	p[0].get();

	int t;



	for (int i = 1; i < n; i++) {

		t = i * 2;

		p[t].get();

		p[t - 1].set((p[t - 2].x + p[t].x) / 2, (p[t - 2].y + p[t].y) / 2);

	}

	t = (n - 1) * 2;

	p[t + 1].set((p[t].x + p[0].x) / 2, (p[t].y + p[0].y) / 2);

}



void findLine(double& A, double& B, double& C, const point& u, const point& v) {

	A = v.y - u.y;

	B = u.x - v.x;

	C = u.y * (v.x - u.x) + (u.y - v.y) * u.x;

}



point findPoint(double A, double B, double C, point k) {



	point c;

	c.x = ( (B * B - A * A) * k.x - 2 * A * B * k.y - 2 * A * C ) / (A * A + B * B);

	c.y = (-2 * A * B * k.x + (A * A - B * B)* k.y - 2 * B * C) / (A * A + B * B);

	return c;

}



bool search(point k) {

	for (int i = 0; i < n; i++) {



		if (vis[i * 2]) continue;



		if (p[i * 2] == k) {

			vis[i * 2] = 1;

			return true;

		}

	}

	return false;

}



bool judge(double A, double B, double C) {



	for (int i = 0; i < n; i++) {



		if (vis[i * 2]) continue;



		point k = findPoint(A, B, C, p[i * 2]);

		

		if (!search(k)) return false;

	}

	return true;

}



bool solve() {

	double A, B, C;

	for (int i = 0; i < n; i++) {

		findLine(A, B, C, p[i], p[i + n]);



		memset(vis, 0, sizeof(vis));

		vis[i] = vis[i + n] = 1;



		if (judge(A, B, C) ) return true;

	}

	return false;

}



int main () {

	int cas;

	scanf("%d", &cas);

	for (int i = 1; i <= cas; i++) {

		init();

		printf("Case %d: %s\n", i, solve() ? "YES" : "NO");	

	}

	return 0;

}


 

 

你可能感兴趣的:(try)