- 一文理清概念:数据中台(DMP)-数据仓库(DW)-数据湖(DL)-湖仓一体-数据治理(DG)
Debug_Snail
HadoopBigDataDataScience数据仓库大数据数据中台数据湖数据治理
数据仓库、数据中台、数据湖、湖仓一体是数据管理和分析领域的重要概念,它们在功能、架构和应用场景上各有特点,同时也在演进中相互关联和补充。以下是对它们的定义和关系的详细解析:1.核心概念(1)数据仓库(DataWarehouse,DW)定义:一种面向主题的、集成的、稳定的数据存储系统,用于支持企业决策分析(如BI、报表)。数据通常经过ETL(抽取、转换、加载)处理,以结构化形式存储,采用Schema
- doris:阿里云 MaxCompute
向阳1218
大数据doris
MaxCompute是阿里云上的企业级SaaS(SoftwareasaService)模式云数据仓库。什么是MaxCompute连接MaxCompute示例--1.创建Catalog。CREATECATALOGmcPROPERTIES("type"="max_compute","mc.default.project"="xxx","mc.access_key"="xxxx","mc.secret_
- 使用Activeloop Deep Lake构建深度学习数据仓库与向量存储
dgay_hua
深度学习人工智能python
技术背景介绍随着深度学习技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。ActiveloopDeepLake是专为深度学习设计的数据仓库,可以作为向量存储使用,支持多模态数据的存储和处理,并且可以直接用于细调大型语言模型(LLMs)。此外,它还提供自动版本控制,无需依赖其他服务,兼容主要云服务提供商
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 什么是数据库中的宽表?
見贤思齊
数据分析数据库
数据库中的宽表(WideTable)是指一种包含大量列的表结构设计,通常通过将多个业务相关的数据字段(甚至来自不同表的字段)合并到一张表中,以减少多表关联查询的需求。宽表常见于数据仓库、OLAP(联机分析处理)系统或大数据场景,其核心目标是优化查询性能,尤其是在需要频繁进行复杂分析或生成报表的场景中。一、宽表的核心特点1.列数多宽表可能包含数十甚至数百列,涵盖多个维度和指标(例如订单信息、客户信息
- 【数据仓库与数据挖掘基础】第一章 概论/基础知识
精神病不行计算机不上班
数据仓库与数据挖掘基础数据挖掘数据仓库
知识点复习:事务(关于事务的一些知识点可以点这里)一、数据仓库的一些基本的知识1.从数据库到数据仓库1.1数据库用于事务处理1.1.1定义:事务处理是指对数据库中数据的操作,这些操作通常包括插入、更新、删除和查询等。事务处理的核心是确保数据的一致性和完整性。事务的定义:事务是数据库操作的基本单位,包含一组逻辑上相关的操作。事务要么全部成功,要么全部失败。ACID特性:原子性(Atomicity):
- 云数据库是什么数据库?
云服务器数据库
云数据库,简单来说,是一种部署在云计算环境中的数据库服务。它借助云计算的强大资源,将数据库管理系统以服务的形式提供给用户,用户无需在本地自行搭建复杂的硬件和软件环境,通过互联网就能便捷地使用数据库功能。这就像是把原本需要在自家搭建、维护的“数据仓库”搬到了云端的“大型仓储中心”,由专业团队负责管理和维护。与传统数据库相比,云数据库有着诸多明显差异。传统数据库往往需要用户自行购置服务器、存储设备等硬
- Kimball维度模型之数据仓库灵魂总线架构
ByteCodeLabs
维度数据仓库设计数据仓库架构
目录一总线架构(BusArchitecture)1总线矩阵(BusMatrix)2Mapping文档二一致性维度(ConformedDimension)三一致性事实(ConformedFact)在数据仓库领域,深刻理解基本概念是确立强大数据管理体系的关键。数据仓库作为一个庞大而复杂的系统,其核心概念涉及多维体系结构、总线架构等关键要素。首要的是理解数据仓库的架构,例如Multidimensiona
- 湖仓一体化及冷、热、实时三级存储
麦当当MDD
数据仓库Spark大数据数据库数据仓库数据库架构
一、湖仓一体化(Lakehouse)湖仓一体化(Lakehouse)是数据湖(DataLake)与数据仓库(DataWarehouse)的结合,旨在解决传统数据架构中数据孤岛、存储冗余、计算性能不足等问题。其核心思想是兼顾数据湖的存储灵活性和数据仓库的管理与计算能力,使得结构化、半结构化、非结构化数据能够在同一存储系统中高效管理和分析。二、为什么需要湖仓一体?数据湖的缺陷:缺乏强Schema,查询
- 深入理解Kettle:ETL工具的学习与实践
未知方程 无解
本文还有配套的精品资源,点击获取简介:Kettle(Spoon)是Pentaho公司开发的开源ETL工具,用于数据整合和数据仓库建设。本学习笔记着重于Kettle的核心——转换引擎,详细探讨其数据处理的各个步骤,包括数据的输入、转换、输出以及工作原理,提供了一系列的学习资源和实践操作指南,旨在帮助学习者深入理解并掌握Kettle的转换引擎,从而提升数据处理能力。1.Kettle(Spoon)简介与
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 阿里云MaxCompute面试题汇总及参考答案
大模型大数据攻城狮
阿里云odps云计算机器学习大数据面试大数据面经增量数据
目录简述MaxCompute的核心功能及适用场景,与传统数据仓库的区别解释MaxCompute分层架构设计原则,与传统数仓分层有何异同MaxCompute的存储架构如何实现高可用与扩展性解析伏羲(Fuxi)分布式调度系统工作原理盘古(Pangu)分布式存储系统数据分片策略计算与存储分离架构的资源弹性扩展方案解释MaxCompute多租户资源隔离实现机制容错机制设计:Worker节点故障时的数据恢复
- 国产化替代 | 星环科技TDH替代IBM数仓,助力城商行构建湖仓一体平台
ibm
城商行构建湖仓一体平台|TDH替代IBM数仓IBM的数仓NetezzaEOL是2023年,数仓Netezza生命周期结束了。数仓产品停止提供支持和更新,不再为该产品提供修复漏洞或功能改进的服务。某城市商业银行在此背景下,启动数据仓库系统升级项目,将数据仓库从IBMNetezza迁移到星环科技大数据基础平台TDH,不但成功实现了数据仓库的国产化替代,还建设了新一代的湖仓一体平台,为银行业务发展提供新
- 《数据仓库》读书笔记:第11章 非结构化数据和数据仓库
search-lemon
数据仓库数据仓库
该系列博文为《数据仓库BuildingtheDataWarehouse》一书的读书笔记,笔者将书中重点内容进行概括总结。大致保留书中结构,一部分根据自己的理解进行调整。如发现问题,欢迎批评指正。章节博文1《数据仓库》读书笔记:第1章决策支持系统的发展2《数据仓库》读书笔记:第2章数据仓库环境3《数据仓库》读书笔记:第3章设计数据仓库4《数据仓库》读书笔记:第4章数据仓库中的粒度5《数据仓库》读书笔
- 稳定运行的以Redshift数据仓库为数据源和目标的ETL性能变差时提高性能方法和步骤
weixin_30777913
数据仓库云计算
当以AmazonRedshift数据仓库为数据源和目标的ETL(Extract,Transform,Load)性能变差时,可能涉及多个方面的优化措施。提升RedshiftETL性能的关键在于多个方面的综合优化。你需要定期监控查询执行情况、调整ETL作业的执行计划、优化数据模型、合理分配资源以及在必要时调整集群配置。通过不断调整和优化这些方面,可以显著提高ETL作业的性能,确保系统稳定、高效运行。以
- 【自学笔记】大数据基础知识点总览-持续更新
Long_poem
笔记大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录大数据基础知识点总览1.大数据概述2.大数据处理技术3.数据仓库与数据挖掘4.大数据分析与可视化5.大数据平台与架构6.大数据安全与隐私总结大数据基础知识点总览1.大数据概述定义:大数据是指数据量巨大、类型多样、处理速度快的数据集合。特征:4V(Volume、Velocity、Variety、Veracity)描述了大数据的主
- Airflow和PySPARK实现带多组参数和标签的Amazon Redshift数据仓库批量数据导出程序
weixin_30777913
pythonspark云计算
设计一个基于多个带标签SQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数,用Airflow进行调度,自动批量地将AmazonRedshift数据仓库的数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。PySpark程序需要异常处理,输出带时间戳和每个运行批次和每个导出文件作业运行状
- 【Apache Paimon】-- 13 -- 利用 paimon-flink-action 同步 mysql 表数据
oo寻梦in记
ApachePaimonapacheflinkmysqlapachepaimon
利用PaimonSchemaEvolution核心特性同步变更的mysql表结构和数据1、背景信息在Paimon诞生以前,若mysql/pg等数据源的表结构发生变化时,我们有几种处理方式(1)人工通知(比如常规的使用邮件),然后运维人员手动同步到数据仓库中(2)使用flink消费DDLbinlog,然后自动更新Hive的外部表和内部表schema那么现在,有了Paimon,我们可以利用其特性,自动
- 数据整合平台Airbyte中的Shopify连接器使用指南
bavDHAUO
python
技术背景介绍Airbyte是一种专门用于ELT数据集成的平台,支持从API、数据库和文件到数据仓库和数据湖的管道搭建。其拥有最大规模的ELT连接器目录,支持众多的数据仓库和数据库。本文将介绍如何使用Airbyte的Shopify连接器加载Shopify对象作为文档。核心原理解析Airbyte的Shopify连接器作为一个文档加载器,通过API将Shopify的订单、产品等对象加载为文档。用户可以通
- 开源 数据仓库_使用这些开源工具进行数据仓库
cumi7754
数据仓库大数据pythonjava编程语言
开源数据仓库bySimonSpäti西蒙·斯派蒂(SimonSpäti)使用这些开源工具进行数据仓库(Usetheseopen-sourcetoolsforDataWarehousing)Thesedays,everyonetalksaboutopen-sourcesoftware.However,thisisstillnotcommonintheDataWarehousing(DWH)field
- HIVE 面试题总结
小余真旺财
Hivehive
Hive依赖于HDFS存储数据,Hive将HQL转换成MapReduce执行,所以说Hive是基于Hadoop的一个数据仓库工具,实质就是一款基于HDFS的MapReduce计算框架,对存储在HDFS中的数据进行分析和管理。一、Hive架构用户接口:CLI(hiveshell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)元数据:元数据包括:表名、表所属的数据库(默
- Hive 面试题
昨夜为你摘星
什么是Hive?Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的意义(最初研发的原因)?降低程序员使用Hadoop的难度,降低学习成本Hive的内部组成模块,作用
- 【数据仓库】数仓分层设计
数据仓库数据分析
一、为何分层?随着信息技术的快速发展,传统数据库已经无法存储和处理海量的数据,数据仓库应运而生。官方说明:数据仓库是用于支持企业决策制定和分析,它通过将不同来源的数据整合在一起,为用户提供一致、全面且易于访问的数据视图。可以简单理解为数据仓库就是专门用来存储和分析海量的历史数据,让数据真正地产生价值,为企业赋能。之前看到过一句话说的很不错,数据仓库的第一性原理是什么?就是以通过整合、优化和管理数据
- 【数据仓库】指标管理
数据仓库
一、指标介绍什么是指标?指标就是用来量化事物的一个工具,帮助我们去将一些抽象的事件得出一个轮廓上的描述。例如我们可以从指标上判断一个产品的好坏,用户粘性等等,例如我们通过日活能去判断出我们整个产品的用户量,从而能反应出我们这个产品的一个健康程度。那么数据仓库中,建立指标体系有以下几点核心意义:统一数据口径,消除歧义(各部门对指标定义不统一)支撑业务决策,提升效率(监控业务健康度)优化资源分配,成本
- 数据湖构建
HaoHao_010
服务器云服务器云计算阿里云
阿里云的数据湖构建(DataLake)是一种用于存储和处理大量不同类型数据的解决方案,通常用于大数据分析和机器学习等应用场景。数据湖与传统的数据仓库不同,它能够存储结构化、半结构化和非结构化数据,支持大规模数据的整合、存储、查询和分析。阿里云提供了一整套工具和服务来帮助企业构建数据湖,以下是数据湖构建的主要步骤和关键服务:1.数据湖概述数据湖是一种统一的数据存储库,能承载来自多个来源的数据,包括:
- 【数据分析】4 商业数据分析技能模型总结
loyd3
数据分析数据分析数据挖掘
优秀的商业分析师需要具备的能力数据分析能力逻辑思维能力赢得结果能力一、数据分析能力扩展:工具链生态与进阶场景1.数据获取技术升级企业级数据源管理:数据湖架构(AWSS3/阿里云OSS)与数据仓库(Snowflake/Redshift)权限管理API自动化采集(Postman+PythonRequests模块)反爬虫策略突破(IP代理池/Selenium模拟登录)新兴数据源拓展:社交舆情数据(Twi
- 周边生态 | WAL-G 与 DBeaver 新版增加 Cloudberry 支持
数据库
ApacheCloudberry™(Incubating)是Apache软件基金会孵化项目,由Greenplum和PostgreSQL衍生而来,作为领先的开源MPP数据库,可用于建设企业级数据仓库,并适用于大规模分析和AI/ML工作负载。GitHub:https://github.com/apache/cloudberryHi社区小伙伴们!我们很高兴与大家分享两个ApacheCloudberry开
- Hive SQL 使用及进阶详解
小四的快乐生活
hivesqlhadoop
一、Hive简介Hive是建立在Hadoop之上的数据仓库基础架构,它提供了类似于SQL的查询语言HiveSQL(也称为HQL),用于对存储在Hadoop分布式文件系统(HDFS)中的大规模数据进行数据查询和分析。Hive将SQL查询转换为MapReduce、Tez或Spark等分布式计算任务,使得不熟悉Java编程的数据分析人员也能方便地处理大规模数据。二、HiveSQL基础使用(一)环境准备在
- 使用 Airbyte 数据集成平台加载 Shopify 数据
fgayif
python
技术背景介绍Airbyte是一个用于API、数据库及文件到仓库和数据湖的ELT管道的数据集成平台。它拥有最全的ELT连接器目录,为各种数据源提供强大支持。本文将介绍如何通过Airbyte平台的Shopify连接器加载数据。核心原理解析Airbyte的Shopify连接器将Shopify数据的各种对象作为文档加载,并将其存储为元数据。通过这种方式,可以方便地将Shopify的订单等信息整合到数据仓库
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那