刷题DAY15 | 102-二叉树的层序遍历 226-翻转二叉树 101-对称二叉树

102 二叉树的层序遍历(medium)

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

思路:队列

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。

代码实现:

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            // 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};

详细解析:
思路视频
代码实现文章


226 翻转二叉树(easy)

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

思路:使用递归法,前序遍历or后序遍历

我们来看一下递归三部曲:

  1. 确定递归函数的参数和返回值

参数就是要传入节点的指针,不需要其他参数了,通常此时定下来主要参数,如果在写递归的逻辑中发现还需要其他参数的时候,随时补充。

返回值的话其实也不需要,但是题目中给出的要返回root节点的指针,可以直接使用题目定义好的函数,所以就函数的返回类型为TreeNode*。

TreeNode* invertTree(TreeNode* root)
  1. 确定终止条件

当前节点为空的时候,就返回

if (root == NULL) return root;
  1. 确定单层递归的逻辑

因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。

swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);

代码实现:

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == NULL) return root;
        swap(root->left, root->right);  // 中
        invertTree(root->left);         // 左
        invertTree(root->right);        // 右
        return root;
    }
};

详细解析:
思路视频
代码实现文章


101 对称二叉树(easy)

给你一个二叉树的根节点 root , 检查它是否轴对称。

思路:使用递归法,后序遍历

对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。

那么如何比较呢?比较的是两个子树的里侧和外侧的元素是否相等。

那么遍历的顺序应该是什么样的呢?本题遍历只能是“后序遍历”,因为我们要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。

正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。

但都可以理解算是后序遍历,尽管已经不是严格上在一个树上进行遍历的后序遍历了。那么我们先来看看递归法的代码应该怎么写。

递归三部曲

  1. 确定递归函数的参数和返回值

因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。

返回值自然是bool类型。

代码如下:

bool compare(TreeNode* left, TreeNode* right)
  1. 确定终止条件

要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。

节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下我称之为左节点右节点)

  • 左节点为空,右节点不为空,不对称,return false
  • 左不为空,右为空,不对称 return false
  • 左右都为空,对称,返回true

此时已经排除掉了节点为空的情况,那么剩下的就是左右节点不为空:

  • 左右都不为空,比较节点数值,不相同就return false

此时左右节点不为空,且数值也不相同的情况我们也处理了。

代码如下:

if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
else if (left->val != right->val) return false; // 注意这里我没有使用else

注意上面最后一种情况,我没有使用else,而是else if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。

  1. 确定单层递归的逻辑

此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。

比较二叉树外侧是否对称:传入的是左节点的左孩子,右节点的右孩子。
比较内侧是否对称,传入左节点的右孩子,右节点的左孩子。
如果左右都对称就返回true ,有一侧不对称就返回false 。
代码如下:

bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
bool isSame = outside && inside;                    // 左子树:中、 右子树:中(逻辑处理)
return isSame;

如上代码中,我们可以看出使用的遍历方式,左子树左右中,右子树右左中,所以我把这个遍历顺序也称之为“后序遍历”(尽管不是严格的后序遍历)。

代码实现:

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        // 首先排除空节点的情况
        if (left == NULL && right != NULL) return false;
        else if (left != NULL && right == NULL) return false;
        else if (left == NULL && right == NULL) return true;
        // 排除了空节点,再排除数值不相同的情况
        else if (left->val != right->val) return false;

        // 此时就是:左右节点都不为空,且数值相同的情况
        // 此时才做递归,做下一层的判断
        bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
        bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
        bool isSame = outside && inside;                    // 左子树:中、 右子树:中 (逻辑处理)
        return isSame;

    }
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        return compare(root->left, root->right);
    }
};

详细解析:
思路视频
代码实现文章

你可能感兴趣的:(LeetCode刷题,算法,c++,leetcode,数据结构,tree)