保存神经网络的两种方法:
(还是以我之前自建的神经网络模型Gu为例,保存这个神经网络)
gu = Gu()
1. torch.save(gu,"gu_module.pth")
2. torch.save(gu.state_dict(),"gu_module.pth")
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
class Gu(nn.Module):
def __init__(self):
super(Gu , self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x = self.model1(x)
return x;
gu = Gu()
torch.save(gu,"gu_module.pth")
运行后将会在本文件夹下产生此文件:gu_module.pth