pku 1811 Prime Test 大素数判定和大数分解

 

/*
* pku1811.c
*
* Created on: 2011-8-1
* Author: 王竹
*/

#include<stdio.h>
#include<stdlib.h>
#define LL long long
LL pmin;
LL modular_multi(LL a, LL b, LL c) {
LL ret;
ret = 0, a %= c;
while (b) {
if (b & 1) {
ret += a;
if (ret > c) {
ret -= c;
}
}
a <<= 1;
if (a > c) {
a -= c;
}
b >>= 1;
}
return ret;
}
LL modular_exp(LL a, LL b, LL c) {
LL ret;
a %= c, ret = 1;
while (b) {
if (b & 1) {
ret = modular_multi(ret, a, c);
}
a = modular_multi(a, a, c);
b >>= 1;
}
return ret;
}
int miller_rabin(LL n, int times) {
if (n == 2) {
return 1;
}
if ((n < 2) && (!(n & 1))) {
return 0;
}
LL te, a, x, y;
te = n - 1;
int temp;
temp = 0;
while (!(te & 1)) {
te >>= 1;
temp++;
}
int i, j;
for (i = 0; i < times; i++) {
a = rand() % (n - 1) + 1;
x = modular_exp(a, te, n);
for (j = 0; j < temp; j++) {
y = modular_multi(x, x, n);
if ((y == 1) && (x != 1) && (x != (n - 1))) {
return 0;
}
x = y;
}
if (x != 1) {
return 0;
}
}
return 1;
}
LL gcd(LL a, LL b) {
LL te;
if (a < b) {
te = a, a = b, b = te;
}
if (b == 0) {
return a;
}
while (b) {
te = a % b;
a = b;
b = te;
}
return a;
}
LL pollard_rho(LL n, int c) {
LL x, y, d, i, k;
x = rand() % (n - 1) + 1;
y = x;
i = 1LL, k = 2LL;
while (1) {
i++;
x = (modular_multi(x, x, n) + c) % n;

d = gcd(y - x, n);
if ((1 < d) && (d < n)) {
return d;
}
if (x == y) {
return n;
}
if (i == k) {
k <<= 1;
y = x;
}
}
return -1;
}
void findFactor(LL n, int c) {
if (n == 1) {
return;
}
if (miller_rabin(n, 6)) {
if (n < pmin) {
pmin = n;
}
return;
}
LL p = n;
while (p >= n) {
p = pollard_rho(p, c--);
}
findFactor(p, c);
findFactor(n / p, c);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("t.txt", "r", stdin);
#endif
int T;
LL n;
while (scanf("%d", &T) != EOF) {
while (T--) {
scanf("%I64d", &n);
if (miller_rabin(n, 10)) {
printf("Prime\n");
continue;
}
pmin = 1LL << 54;
findFactor(n, 107);
printf("%I64d\n", pmin);
}
}
return 0;
}

你可能感兴趣的:(test)