- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- 前沿FPGA开发:技术与管理的有效结合
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据fpga开发ai
前沿FPGA开发:技术与管理的有效结合关键词:FPGA开发、技术管理、前沿技术、项目管理、资源优化摘要:本文深入探讨了前沿FPGA开发中技术与管理有效结合的重要性和具体方法。在FPGA技术不断发展的今天,单纯依靠技术或管理都难以实现项目的成功。通过将先进的FPGA技术与科学的管理理念相结合,能够提高开发效率、优化资源配置、降低成本并提升产品质量。文章详细阐述了FPGA开发的核心概念、相关算法原理、
- 2024最新 动物识别数据集(12-02已更新)
数据猎手小k
机器学习自然语言处理人工智能
动物识别数据集是用于训练和评估动物识别模型的集合,这些数据集通常包含多种动物的图像或视频,以及对应的标签信息。它们在生物多样性监测、生态研究、农业和城市安全管理等领域发挥着重要作用。随着深度学习技术的发展,动物识别数据集的处理方式、算法逻辑和模型搭建与训练流程也在不断进步,以提高识别的准确性和效率。一、背景意义动物识别技术的发展对于生物多样性保护、生态学研究、农业和野生动物保护等多个领域具有重要意
- Python 领域 vllm 优化模型推理速度的方法
Python编程之道
Python编程之道python开发语言ai
Python领域vLLM优化模型推理速度的方法关键词:Python、vLLM、模型推理速度、优化方法、推理性能摘要:本文聚焦于Python领域中vLLM对模型推理速度的优化方法。首先介绍了相关背景知识,包括vLLM的概念和优化模型推理速度的重要性。接着阐述了vLLM的核心概念与架构,详细分析了其优化的原理。通过具体的Python代码展示了核心算法原理及操作步骤,同时给出了相应的数学模型和公式进行理
- c++11 标准模板(STL)(std::locale)(一)
繁星璀璨G
本地化库c++标准库模板STLlocale本地环境
用以封装文化差异的多态刻面的集合classlocale;std::locale类型对象是不可变平面的不可变索引集。C++输入/输出库的每个流对象与一个std::locale对象关联,并用其平面分析及格式化所有数据。另外,locale对象与每个std::basic_regex对象关联。locale对象亦可在标准容器和算法中用作进行字符串对照的谓词,而且能被直接访问,以获得或修改其所保有的平面。C++
- 【牛客刷题】实现返回最大的不大于n的完美数的函数
字节卷动
牛客刷题java算法牛客
文章目录一、题目介绍1.1题目描述1.2输入描述1.3输出描述1.4示例二、解题思路2.1核心算法设计2.2性能优化关键2.3算法流程图三、解法实现3.1解法一:借位+贪心3.1.1初级版本分析3.2解法二:优化版(推荐)3.2.1优化版本分析四、总结与拓展4.1关键优化技术4.2进阶优化方向4.3应用场景扩展一、题目介绍1.1题目描述给定一个正整数n,定义一个完美数为每一位数字只包含1、2、3的
- AlphaGPT通过国家AIGC生成式算法备案,为法律专业人士提供更加合规可靠的ai技术支持
资讯分享周
AIGC人工智能
在当前互联网信息时代,大模型算法已成各行业不可或缺的核心,不仅改善生活和工作,也在创新中展现巨大潜力。然而,随着算法应用的普及,如何合规管理算法,保护用户权益和隐私,确保公正运行,成为重要议题。日前,国内领先的法律科技企业iCourt宣布,其自主研发的法律垂类领域大模型AlphaGPT成功通过国家生成式模型深度学习合成算法备案。本次备案的通过,彰显了iCourt在法律AI领域有迈向了一个新的里程碑
- C++11标准库算法:深入理解std::none_of
码事漫谈
c++11c++算法java
文章目录函数原型与核心语义模板参数约束实现原理与标准库设计思想与all_of/any_of的逻辑关系应用场景1.输入验证2.状态检查3.与函数对象结合4.替代传统循环性能特性与注意事项复杂度保证迭代器选择建议谓词设计要点C++标准演进与扩展总结C++11标准为STL带来了诸多革命性改进,其中算法库的扩展尤为引人注目。std::none_of作为新增的三大逻辑判断算法之一(与std::all_of、
- 三种方法详解最长回文子串问题
文章目录题目描述方法一:动态规划状态转移方程:状态转移公式:代码实现:使用滚动数组优化空间方法二:中心扩展法核心思想算法步骤代码实现复杂度分析方法三:马拉车算法算法思路代码实现复杂度分析三种方法对比回文子串是字符串处理中的经典问题,本文将通过动态规划、中心扩展和马拉车算法三种方法,详细解析如何高效求解最长回文子串,并对比各方法的优劣。题目描述方法一:动态规划我们定义一个二维布尔数组dp,其中:dp
- 力扣 经典算法之爬楼梯
今天来用两种的方法解一道题题目如下:假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?先分析题目吧,我觉得它在考我数学思维,解数学题嘛,一步步来吧。n=1:走1步,只能有1种解法n=2:可以走1+1步,也可以直接走2步,2种解法n=3:可以走的方式有:1+1+1,1+2,2+1,共3种n=4:走法有1+1+1+1,1+2+1,2+1+1,1+1
- 【LeetCode 热题 100】54. 螺旋矩阵
xumistore
LeetCodeleetcode矩阵算法java
Problem:54.螺旋矩阵题目:给你一个m行n列的矩阵matrix,请按照顺时针螺旋顺序,返回矩阵中的所有元素。文章目录整体思路完整代码时空复杂度时间复杂度:O(M*N)空间复杂度:O(1)(不考虑输出列表)整体思路这段代码旨在解决一个经典的矩阵问题:螺旋矩阵(SpiralMatrix)。问题要求按照顺时针螺旋的顺序,返回矩阵中的所有元素。该算法采用了一种非常直观的“路径模拟”策略。它模拟一个
- 算法45:动态规划专练(力扣70: 爬楼梯 力扣746:使用最小花费爬楼梯)
适合java程序员的算法
算法算法动态规划leetcode
力扣70题:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶分析:1.如果有1个楼梯,那只能走1步登顶。1中方法2.如果有2个楼梯。a.我们可以一次走一
- 区块链重塑域名商业版图:技术革新、市场机遇与未来图景
boyedu
区块链终端域名区块链终端域名
在Web3.0时代,区块链技术正以去中心化、抗审查、身份绑定等特性重构域名系统,不仅解决了传统DNS的安全漏洞与中心化风险,更开创了数字身份、品牌资产化等全新商业模式。以下从技术革新、市场现状、挑战应对及典型案例四个维度,深入剖析区块链域名的商业潜力。一、技术革新:区块链如何重构域名基础设施?去中心化根域名系统Handshake协议:通过UTXO模型与SHA3算法构建无需许可的域名注册体系,其HN
- SEO优化技巧深度解析:从算法逻辑到实战策略的全链路突破
boyedu
网站建设网站建设网站运营网站架构
第一章搜索引擎算法逻辑:SEO优化的底层密码1.1算法进化史:从关键词匹配到意图理解搜索引擎算法经历了从简单关键词匹配到复杂语义理解的跨越式发展。早期算法以PageRank为核心,通过分析网页间链接关系评估权威性。随着Hummingbird算法的推出,搜索引擎开始解析自然语言,BERT算法进一步实现上下文语义理解。当前算法已形成多维度评估体系,涵盖内容质量、用户体验、权威性建设等层面。以Googl
- 香港推出的稳定币和数字货币的区别
boyedu
加密货币数字货币香港稳定币加密货币虚拟货币
香港推出的稳定币与数字货币在定义、发行主体、监管框架、使用场景及战略定位上存在显著差异。以下为具体解析:一、定义与性质的核心区别稳定币定义:与法定货币(如美元、港元)或资产挂钩的加密货币,旨在通过抵押或算法维持价值稳定。示例:京东币链科技测试的稳定币锚定港元,用于跨境支付;蚂蚁数科计划发行与美元挂钩的稳定币。特点:保留加密货币的去中心化特性,但通过储备资产(如现金、国债)减少价格波动。数字货币定义
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 云原生API Gateway:连接微服务的桥梁
AI云原生与云计算技术学院
云原生gateway微服务ai
云原生APIGateway:连接微服务的桥梁关键词:云原生、API网关、微服务架构、服务治理、流量管理、服务网格、DevOps摘要:本文深入探讨云原生环境下API网关的核心原理与实践应用,解析其在微服务架构中作为统一入口的关键作用。通过详细阐述API网关的核心功能、技术架构、算法原理及数学模型,结合Kubernetes实战案例演示流量管理、安全防护、服务编排等核心能力。同时分析典型应用场景,推荐前
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- AI人工智能领域,Stable Diffusion掀起的技术风暴
AI大模型应用工坊
人工智能stablediffusionai
AI人工智能领域,StableDiffusion掀起的技术风暴关键词:AI人工智能、StableDiffusion、技术风暴、图像生成、扩散模型摘要:本文深入探讨了AI人工智能领域中StableDiffusion所掀起的技术风暴。首先介绍了StableDiffusion的背景,包括其目的、预期读者和文档结构等。详细阐述了核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。对核心算法原
- AIGC 领域 AI 写作如何实现智能内容推荐
SuperAGI2025
AIGC人工智能ai
AIGC领域AI写作如何实现智能内容推荐关键词:AIGC、AI写作、智能内容推荐、推荐算法、用户画像摘要:本文聚焦于AIGC领域中AI写作的智能内容推荐实现。首先介绍了该主题的背景,包括目的、预期读者等内容。接着阐述了核心概念与联系,如AIGC、AI写作、智能内容推荐等概念及其关联。详细讲解了核心算法原理,包括协同过滤、基于内容的推荐等,并给出Python代码示例。探讨了相关数学模型和公式,通过具
- 华为OD机试 2025B卷 - 字符串加密 (C++ & Python & JAVA & JS & C语言)
YOLO大师
华为od华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解2025B卷100分题型题目描述给你一串未加密的字符串str,通过对字符串的每一个字母进行改变来实现加密,加密方式是在每一个字母str[i]偏移特定数组元素a[i]的量,数组a前三位已经赋值:a[0]=1,a[1]=2,a[2]=4。当i>=3时,数组元素a[i]=a[i-1]+a[i-2]+a[i-3]。例如:
- 俄罗斯方块AI深度解析:从算法原理到实现细节
智算菩萨
Python小游戏项目实战人工智能算法
俄罗斯方块AI深度解析:从算法原理到实现细节前言俄罗斯方块,这个诞生于1984年的经典游戏,至今仍然是人工智能研究领域的热门课题。当简单的几何形状在网格中不断下落时,看似简单的规则背后却隐藏着复杂的策略决策问题。本文将深入剖析一个基于Python实现的俄罗斯方块AI系统,探讨其如何通过精巧的算法设计实现近乎完美的自动游戏表现。游戏状态的数字化抽象在构建任何游戏AI之前,我们首先需要将人类直观理解的
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- 专知智库数据场景生态:开启全球数字文明新纪元——数据零件×场景编码×SEI指数构建下一代数字经济基座
人形机器人专利池研究中心
数据场景架构师数据零件架构师数据场景生态人工智能数据场景架构师算法大数据
一、传统数字经济的“柏林墙困境”全球产业痛点扫描:数据孤岛化:企业间数据流通成本高达交易额37%(麦肯锡2024)价值黑箱化:85%数据资产无法量化定价(普华永道审计报告)技术碎片化:同类算法重复开发年耗$1800亿破局宣言:专知智库提出“可拆解、可组合、可交易”三可原则,以数据零件+场景编码+SEI计量重构全球数字基础设施二、三大基座:数字经济的新操作系统1.数据零件(DP):技术场景最小单元革
- 算法题目记录
iamwiam
java
数据空间研究院-后端试题题目一:线程安全的链表描述:实现题目二:自定义注解与反射描述:实现题目三:简化的消息队列描述实现题目一:线程安全的链表描述:实现一个线程安全的链表类ThreadSafeLinkedList,支持以下操作:add(Telement)-在链表末尾添加元素。remove(Telement)-移除链表中的指定元素。contains(Telement)-检查链表中是否包含指定元素。要
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- 算法 堆与堆排序
堆的定义与分类堆是一种特殊的完全二叉树,通常分为两种类型:大顶堆(大根堆):每个节点的值都大于或等于其子节点的值。小顶堆(小根堆):每个节点的值都小于或等于其子节点的值。堆的性质结构性:堆是一棵完全二叉树,即除了最后一层外,其他层的节点都是满的,且最后一层的节点从左到右填充。有序性:堆中每个节点的值都满足特定的顺序关系(大于或小于子节点)。堆的存储数组索引0通常作为堆的根节点。对于索引为i的节点,
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不