- Apache PAIMON 学习
潇锐killer
学习
参考:ApachePAIMON:实时数据湖技术框架及其实践数据湖不仅仅是一个存储不同类数据的技术手段,更是提高数据分析效率、支持数据驱动决策、加速AI发展的基础设施。新一代实时数据湖技术,ApachePAIMON兼容ApacheFlink、Spark等主流计算引擎,并支持流批一体化处理、快速查询和性能优化,成为加速AI转型的重要工具。ApachePAIMON是一个支持大规模实时数据更新的存储和分析
- Windows系统下的Spark环境配置
eeee~~
3:大数据技术实用教程spark大数据分布式
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和机器学习。Spark支持批处理和流处理,其显著特点是能够在内存中进行迭代计算,从而加快数据处理速度。尽管Spark是用Scala开发的,但它也为Java、Scala、Python和R等高级编程语言提供了开发接口。Spark提供了多个核心组件,包括:SparkCore:提供内存计算的能力
- 阿里云日志服务sls的典型应用场景
阿里云天池
体验场景云计算
日志服务的典型应用场景包括:数据采集与消费、数据清洗与流计算(ETL/StreamProcessing)、数据仓库对接(DataWarehouse)、日志实时查询与分析。云起实验室日志服务体验(活动期完成有机会参与100%中奖):https://developer.aliyun.com/adc/series/activity/sls-1数据采集与消费通过日志服务LogHub功能,可以大规模低成本接
- 基于spark+hadoop+hive大数据分析的电影推荐系统的设计与实现
毕设木哥
sparksparkhadoophivespringjava
作者主页:计算机毕设小程精彩专栏推荐订阅:在下方专栏Java实战项目文章目录Java实战项目一、开发介绍1.1开发环境二、系统介绍2.1图片展示三、部分代码设计3.1.部分代码如下:**总结****大家可以帮忙点赞、收藏、关注、评论啦****有问题评论区交流**一、开发介绍1.1开发环境技术栈:spark+hadoop+hive离线ETL+在线数据分析(OLAP)+流计算+机器学习+图计算二、系统
- 2024.2.19 阿里云Flink
白白的wj
flink大数据
一、Flink基本介绍Spark底层是微批处理,Flink底层则是实时流计算流式计算特点:数据是源源不断产生,两大问题,乱序和延迟Stateful:有状态Flink的三个部分Source:Transactions,logs,iot,clicksTransformation:事件驱动,ETL,批处理Sink:输出HDFS,KafkaFlink的特性支持高吞吐,低延迟,高性能的流处理支持带有事件时间的
- Flink 2.0 状态存算分离改造实践
后端flink大数据
本文整理自阿里云智能Flink存储引擎团队兰兆千在FFA2023核心技术(一)中的分享,内容关于Flink2.0状态存算分离改造实践的研究,主要分为以下四部分:Flink大状态管理痛点阿里云自研状态存储后端Gemini的存算分离实践存算分离的进一步探索批量化存算分离适用场景一、Flink大状态管理痛点1.1Flink状态管理状态管理是有状态流计算的核心。目前在Flink生产环境中使用的最多的状态后
- 阿里云实时计算企业级状态存储引擎 Gemini 技术解读
flink实时计算后端
本文整理自阿里云Flink存储引擎团队李晋忠,兰兆千,梅源关于阿里云实时计算企业级状态存储引擎Gemini的研究,内容主要分为以下五部分:流计算状态访问的痛点企业级状态存储引擎GeminiGemini性能评测&线上表现结语参考一、流计算状态访问的痛点Flink作为有状态的流计算系统,状态存储引擎在其中扮演着重要角色。Flink中状态(State)用来存储计算的中间结果或者历史的事件序列(如图1-1
- 使用Flink完成流数据统计 | 京东云技术团队
一、统计流程所有流计算统计的流程都是:1、接入数据源2、进行多次数据转换操作(过滤、拆分、聚合计算等)3、计算结果的存储其中数据源可以是多个、数据转换的节点处理完数据可以发送到一个和多个下一个节点继续处理数据Flink程序构建的基本单元是stream和transformation(DataSet实质上也是stream)。stream是一个中间结果数据,transformation对数据的加工和操作
- 02-flink基本架构
蜗牛写java
02-flink基本架构flink基本组件栈flink基本组件栈.pngAPI&Libraries同时提供了流计算和批计算的接口,同时在此基础上抽象出不同的应用类型的组件库Runtime核心层主要负责对上层不同接口提供基础服务,也是Flink分布式计算框架的核心实现层,支持分布式Stream的执行、jobGraph到ExecutionGraph的映射转换、任务调度等。将DataStream和Dat
- Flink 1.7.0 安装、配置与使用
编码前线
本地单机安装ApacheFlink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。有状态计算的Exactly-once语义。状态是指flink能够维护数据在时序上的聚类和聚合,同时它有checkpoint机制支持带有事件时间(eventtime)语义的流处理和窗口处理。事件时间的语义使流计算的结果更加精确,尤其在事
- Structured Streaming
Francek Chen
Spark编程基础sparkzookeeperkafkaStructuredStreaming
目录一、概述(一)基本概念(二)两种处理模型(三)StructuredStreaming和SparkSQL、SparkStreaming关系二、编写StructuredStreaming程序的基本步骤(一)实现步骤(二)运行测试三、输入源(一)File源(二)Kafka源(三)Socket源(四)Rate源四、输出操作(一)启动流计算(二)输出模式(三)输出接收器一、概述提供端到端的完全一致性是设
- Flink 2.0 状态存算分离改造实践
后端flink大数据
本文整理自阿里云智能Flink存储引擎团队兰兆千在FFA2023核心技术(一)中的分享,内容关于Flink2.0状态存算分离改造实践的研究,主要分为以下四部分:Flink大状态管理痛点阿里云自研状态存储后端Gemini的存算分离实践存算分离的进一步探索批量化存算分离适用场景一、Flink大状态管理痛点1.1Flink状态管理状态管理是有状态流计算的核心。目前在Flink生产环境中使用的最多的状态后
- 从一到无穷大 #23 《流计算系统图解》书评
李兆龙的博客
从一到无穷大时序数据库流计算
本作品采用知识共享署名-非商业性使用-相同方式共享4.0国际许可协议进行许可。本作品(李兆龙博文,由李兆龙创作),由李兆龙确认,转载请注明版权。文章目录引言内容总结引言春节假期回到家里断然是不会有看纸质书的时间的。造化弄人,二月三号早上十一点的飞机延误到一点多,原本三小时不到的阅读时间延长为五个小时,也给了我看完这本书的机会。第一次了解到这本书是Tison在朋友圈发了他写的书评[2],开头便是:值
- AXI数据流计算CRC8的代码
冰冻土卫二
fpga开发
modulecrc8_coder_8bit(inputclk,inputrst_n,inputdin_last,inputdin_valid,input[7:0]din_data,outputregdout_last,outputregdout_valid,outputreg[7:0]dout_data);parameter[7:0]POLY=8'h07;reg[7:0]crc_remainder
- AXI数据流计算CRC16的代码
冰冻土卫二
fpga开发
modulecrc16_coder_8bit(inputclk,inputrst_n,inputdin_last,inputdin_valid,input[7:0]din_data,outputregdout_last,outputregdout_valid,outputreg[7:0]dout_data);parameter[15:0]POLY=16'h1021;//or16'h8005reg[
- Flink 2.0 状态存算分离改造实践
Apache Flink
flink网络大数据
本文整理自阿里云智能Flink存储引擎团队兰兆千在FFA2023核心技术(一)中的分享,内容关于Flink2.0状态存算分离改造实践的研究,主要分为以下四部分:Flink大状态管理痛点阿里云自研状态存储后端Gemini的存算分离实践存算分离的进一步探索批量化存算分离适用场景一、Flink大状态管理痛点1.1Flink状态管理状态管理是有状态流计算的核心。目前在Flink生产环境中使用的最多的状态后
- 视频存储空间的计算:适用安防监控录像、视频会议录像、手机录像、短视频录像等场景
威迪斯特
音视频手机智能手机实时音视频网络网络安全
目录一、问题二、计算方法三、实例1、需求2、确定存储空间的计算方法3、存储容量计算一、问题经常有客户、伙伴问我,视频监控中录像要多少个TB?要多少个硬盘?每次都要问问他们各种情况,是什么样的视频?多少个?录多长时间?二、计算方法以下是我们总结的一些计算方法:码流计算法:这是最常用的方法之一,通过将码流(Mbps或Kbps为单位)乘以监控路数、监控天数、码流格式转换系数和压缩比系数,得到存储容量(G
- Flink实时流计算入门系列——广播变量使用
晨冉1688
总是被项目经理问:为什么你的Flink代码占用我这么多的集群资源啊?集群受不了,优化一下吧,程序员一听到优化的痛疼症,你懂的……image今天我们就讲解一个比较基础,且容易被人忽略的基础优化Flink程序的方法。Flink和Spark一样,都有支持广播变量这定义。广播变量,可以理解成为日常的广播,是一个公共的变量。广播变量创建后,它可以运行在集群中的任何function上,而不需要多次传递给集群节
- 使用 Flink Hudi 构建流式数据湖
浪尖聊大数据-浪尖
大数据sparkhadoopjava数据库
摘要:本文介绍了FlinkHudi通过流计算对原有基于mini-batch的增量计算模型不断优化演进。用户可以通过FlinkSQL将CDC数据实时写入Hudi存储,且在即将发布的0.9版本Hudi原生支持CDCformat。主要内容为:背景增量ETL演示一、背景近实时从2016年开始,ApacheHudi社区就开始通过Hudi的UPSERT能力探索近实时场景的使用案例[1]。通过MR/Spark的
- DolphinDB 智慧楼宇场景:门禁异常监测
DolphinDB智臾科技
工业物联网流计算物联网时序数据库智慧楼宇流计算门禁安防
物联网的发展为智能安防和自动化监控带来了更多便利,同时,新型城镇建设、智慧城市与智慧社区的发展也为门禁管理等安防问题智能化提出了更高的要求。在智能化发展的背景下,门禁成为一套集成了访客、考勤、消费、巡更、梯控等更多功能的全面便捷的系统安全应用,随着门禁系统应用愈发广泛,对海量数据的实时快速处理也成为了日益重要的问题。作为一款高性能分布式时序数据库,DolphinDB提供了流数据表和流计算引擎用于实
- 【三相潮流】基于仿射区间的,含分布式电源的配电网三相潮流算法
fpga和matlab
MATLAB板块20:新能源其他仿射区间分布式电源配电网三相潮流算法
1.软件版本matlab2021a2.本算法理论知识当只采用区间运算,得到的结果则有可能过于保守,而采用仿射运算后,本文方法能够得到更窄的不确定区域,从而得到更窄的区间。针对本课题要求,“基于仿射区间的含分布式电源的配电网三相潮流算法”,其中关于这方面的概念,主要从如下的三个方面角度考虑:理想状态下的,确定性潮流计算——即对应本课题的“含分布式电源的配电网三相潮流算法”。实际状态下,不确定性潮流计
- Flink实战五_状态机制
core512
Flinkflink状态
接上文:Flink实战四_TableAPI&SQL在学习Flink的状态机制之前,我们需要理解什么是状态。回顾我们之前介绍的很多流计算的计算过程,有些计算方法,比如说我们之前多次使用的将stock.txt中的一行文本数据转换成Stock股票对象的map操作。来一个数据,就计算一个数据,这些操作,只需要依赖于当前输入的数据就够了,不需要其他的辅助数据。输入相同的文本数据,输出的肯定是一个相同的Sto
- C语言文件操作
EPSDA
C语言基础知识c语言
目录C语言文件操作C语言中的流与文件指针C语言中的流计算机中的读写操作与输入输出操作的关系文件指针C语言中的标准流C语言中的标准流文件类型程序文件数据文件文本文件二进制文件文件的打开和关闭文件的打开fopen与关闭fclose文件打开模式文件的顺序读写顺序读写函数函数fgetc和fputc函数fgets和fputs函数fscanf与fprintf函数fread与fwrite函数printf/sca
- java 加权平均_使用Java 8流计算加权平均值
培茛
java加权平均
您可以为此任务创建自己的收集器:staticCollectoraveragingWeighted(ToDoubleFunctionvalueFunction,ToIntFunctionweightFunction){classBox{doublenum=0;longdenom=0;}returnCollector.of(Box::new,(b,e)->{b.num+=valueFunction.a
- Flink 2.0 状态管理存算分离架构演进
Apache Flink
flink架构大数据
本文整理自阿里云智能Flink存储引擎团队负责人梅源在FlinkForwardAsia2023的分享,梅源结合阿里内部的实践,分享了状态管理的演进和Flink2.0存算分离架构的选型。内容主要分为以下五部分:引言为什么状态对Flink如此重要状态存储提升——社区和商业版状态存储状态管理存算分离架构——架构演进和挑战总结1.引言我们在这个时间点重新聊状态存储这个话题是因为状态存储是流计算的核心。Fl
- Day 1322:架构师训练营学习总结(w13)
kafkaliu
本周主要讲了Spark流计算、数据分析和机器学习。Spark的主要特点是DAG切分多阶段计算、内存存储中间结果、RDD的编程模型。RDD是Spark的核心概念。Spark直接针对数据进行编程,将大规模数据集合抽象成RDD对象,然后在这个对象上进行计算处理,得出一个新的RDD,继续再进行计算处理,直到得到最后的结果。Spark的分布式计算也都是以RDD为单位展开分片、任务调度。网页排名算法PageR
- Matlab|基于改进遗传算法的储能选址定容(可任意设定储能数量)
科研工作站
选址定容matlab储能选址定容优化配置分布式光伏风电
目录主要内容部分代码结果一览(以3个储能为例)下载链接主要内容该模型采用改进遗传算法优化配电网系统中储能选址位置和容量,程序以IEEE33节点系统为分析对象,以网损最小为目标,采用matpower实现系统潮流计算,主要有三个优势:①储能数量可以任意设定,通过【命令行窗口】直接输入储能数量即可;②采用模拟退火改进遗传算法,算法创新性强;③模型增加了分布式光伏和风电,有效拓宽学习思路。程序采用matl
- Stuuctured Streaming基础--学习笔记
祈愿lucky
大数据学习笔记kafka
Structuredstreaming介绍spark进行实时数据流计算时有两个工具:SparkStreaming:编写rdd代码处理数据流,可以解决非结构化的流式数据StructuredStreaming:编写df代码处理数据流,可以解决结构化和半结构化的流式数据1,数据相关介绍有界数据和无界数据①有界数据:有起始位置,有结束位置。比如文件数据有起始行,有结束行有明确的数据容量大小。处理数据时就能
- pyspark之Structured Streaming结果保存到Mysql数据库-socket例子统计(含批次)
heiqizero
数据库mysqlsparkpython
frompyspark.sqlimportSparkSession,DataFramefrompyspark.sql.functionsimportexplode,split,lit"""实现将数据保存到mysql数据库,同时将流计算batch保存到数据库中"""if__name__=='__main__':spark=SparkSession.builder.getOrCreate()spark
- 【python】EI顶刊复现:综合能源系统分析的统一能路理论(三):稳态与动态潮流计算程序代码!
预测及优化
python能源php
适用平台:python3.8;模块:pandas、numpy、scipy、matplotlib2程序基于统一能路理论,针对天然气网络和供热网络,借鉴电力系统潮流计算方法,提出了(7节点)气网-(6节点)热网的稳态-动态潮流计算方法,奠定了多能流在对时间尺度上统一分析的基础。程序中算例丰富、注释清晰、干货满满,可扩展性和创新性很高!下面对文章和程序做简要介绍!程序创新点:1)借鉴电力系统潮流计算方法
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交