题目和背景可以参看这里:http://weibo.com/p/1001603856172376577500 和 http://blog.jobbole.com/87600/
这里不妨明确下题目:给定一个大文件,内含5亿个整数,每个整数都属于1-9999999之间。请设计方案,对这些元素进行排序,并将排序结果写成文件输出。可用内存不超过2G。
注意到元素一共有5亿个,因此,文件中肯定存在重复元素,也就是说有些元素不止出现一次,因此基于朴素的bitmap并不能胜任此题。
由于lau叔提供的数据集下载太麻烦,因此自己手动生成了一个。
这里提供两个方案:
方案I:由于每个元素都不超过9999999,因此,可以考虑使用CountingSort(计数排序),统计每个元素出现的次数。如果文件中1出现三次,2出现三次,5出现两次,那么最后的结果就是11122255。对CountingSort的进一步介绍,可以参考《算法导论》
#include<iostream> using namespace std; const int MAX = 9999999; int C[MAX + 1] = { 0 }; void countingSort() { char filename_in[] = "E:\\in.txt"; FILE *fp_in = fopen(filename_in, "r"); char content[10]; while (!feof(fp_in)) { fgets(content,10, fp_in); int element = atoi(content); ++C[element]; //counting... } fclose(fp_in); //output char filename_out[] = "E:\\out.txt"; FILE *fp_out = fopen(filename_out, "w"); for (int i = 1; i <= MAX;i++) { for (int j = 1; j <= C[MAX]; j++) { fprintf(fp_out, "%d\n", i); } } fclose(fp_out); } int main() { countingSort(); system("pause"); return 0; }
方案II
我们可以使用k-路归并策略,也就是原文提到的外部排序。我们先按行读入文件,分批排序,输出k个临时的小文件,其中每个小文件都是有序的。这样,我们得到k个有序的小文件,问题转换为对这k个有序小文件的合并。
说明:
1,原文评论列表中,网友iduanyingjie 的评论 “ 外部排序的第2部分【合】的时候,没必要每次去取一个最小值。因为文件1,文件2,文件3每个文件中拿出的最小值,肯定是这三个文件中的最小的3个值了,将这三个值进行排序(1,2,3),直接写入大文件。第二回合中就直接取出的是(4,5,6) ”并不正确。考虑如下的三个有序小文件:
20 50 60
40 45 70
70 85 90
首选取出20、40、70,排序比较后输出最小的元素20,此时正确的做法是从第一个文件(也就是最小元素20所在的那个文件)读出50,然后从50、40、70中选出最小元素,也就是50,输出。接着从50所在的文件也就是第一个文件读出60,从60、40、70选出最小元素也就是40输出。以此类推。此时,并不能按照网友iduanyingjie 所说的简单的排序输出、排序输出。
因此,正确的做法是,读入k个元素,输出最小元素,再从最小元素所在的文件读下一个元素,继续选择最小元素输出;直到k个有序文件中的所有元素都处理完毕为止。
2,由于选择最小值是一个很关键的操作,因此可以使用包含k个元素的最小堆来高效的完成。整个过程就转换为:输出最小、替换堆顶、重建堆;输出最小、替换堆顶、重建堆......
3,当某个小文件的元素都处理完毕后,此时我们采取的策略是移动堆底部的元素到堆顶,并将堆大小减去1。这样,当堆大小为0的时候,说明所有的文件中的所有元素都处理完毕了。为了知道最小元素所在的文件,我们需要一个变量来记录文件号。
#include<iostream> using namespace std; const int K = 500; struct Node { int value; int file_id; }; class Heap { public: Heap(int capacity) { this->capacity = capacity; this->size = 0; p = new Node[this->capacity + 1]; } void buildMinHeap() { for (int i = size / 2; i >= 1; i--) { minHeapify(i); } } void insertNode(Node t) { size++; p[size].value = t.value; p[size].file_id = t.file_id; } Node getMin() { return p[1]; } int getHeapSize() { return size; } void minHeapify(int i) { int left = 2 * i; int right = 2 * i + 1; int min = i; if (left <= size && p[left].value < p[i].value) { min = left; } if (right <= size && p[right].value < p[min].value) { min = right; } if (min != i) { Node tmp = p[i]; p[i] = p[min]; p[min] = tmp; minHeapify(min); } } void replaceRootNodeByLastNode() { p[1] = p[size]; size--; } void replaceRootNodeByNextElement(Node n) { p[1] =n; } ~Heap() { delete[]p; } private: Node *p; int size; int capacity; }; Node getOneElement(FILE* & fp,int file_id) { char content[10]; Node ret; if(!feof(fp)) { fgets(content, 10, fp); int element = atoi(content); ret.file_id = file_id; ret.value = element; } else { ret.value = -1; } return ret; } void writeResult(FILE* & fp, int element) { fprintf(fp, "%d\n", element); } void kWayMergeViaHeap(FILE** fp) { Heap *pHeap = new Heap(K); for (int i = 0; i <K; i++) { Node t = getOneElement(fp[i], i); pHeap->insertNode(t); } pHeap->buildMinHeap(); char filename_output[] = "E:\\outT.txt"; FILE *fp_out = fopen(filename_output, "w"); while (pHeap->getHeapSize()>0) { Node minNode = pHeap->getMin(); writeResult(fp_out, minNode.value); Node t = getOneElement(fp[minNode.file_id], minNode.file_id); if (t.value==-1) //there are no elements in fp[minNode.file_id] { pHeap->replaceRootNodeByLastNode(); } else { pHeap->replaceRootNodeByNextElement(t); } pHeap->minHeapify(1); } // for (int i = 0; i <K; i++) { fclose(fp[i]); } fclose(fp_out); delete pHeap; }
1,堆的实现大学时候写的,参照《算法导论》完成,尽管进一步的加速和优化是可能的。例如,minHeapify函数的末尾是一个尾递归,可以通过循环来代替。当然啦,开启编译器优化之后编译器可能会自动完成,因此2*i这类语句就真没必要用移位操作了。再例如,getOneElement中的接口设计,返回Node意味着需要构造函数开销,当然设计为只返回int更佳,但是后面就稍微麻烦了点。
2,堆是非常有用的一种数据结构,不仅可以用于k路合并,也可以用于k路求交(求k个有序链表/文件的交集),试试看。
3,对于输出,其实可以通过一个buffer保存一定量的元素之后,再一口气刷到硬盘上。麻烦,不写了。
4,为什么io部分用C,而其他部分用C++?这是因为C++的io实在是太慢了,慢的吓人。