POJ1185 - 炮兵阵地(状态压缩DP)

题目大意

中文的。。直接搬过来。。。

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

POJ1185 - 炮兵阵地(状态压缩DP)

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

题解

经典的状态压缩DP啦~~~~总算把这题过了~~~~~做完POJ3254再搞这题还是挺容易的~~~

对于当前第i行的放置情况,会影响到i-1以及i-2行的放置情况,我们可以先预处理一行的所有合法状态(用数组s表示)并记录此状态放置的大炮个数(数组sum表示),那怎么判断合法呢?很简单,对于状态s,只需要把s向右移一位即可,即(s>>1),然后判断一下s&(s>>1)是否为0,如果是,则不存在相邻的两个大炮,同理,还需要判断一下s&(s>>2)是否为0,即不存在距离为2的两个大炮。接下来就是状态转移了,由于会受前面两行的影响,所以状态转移方程得是三维的:dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a])(s[a]&s[b]==0 && s[b]&s[c]==0 && s[a]&s[c]==0)  表示第i行状态为s[a],并且i-1行状态为s[b]能够放置最多的大炮数量,如果i-2行的状态为s[c],并且三个状态能够兼容(即不存在有在同列的大炮),那么就i-1行状态为s[b],i-2行为状态s[c]的这个决策(dp[i-1][b][c])就能够转移到决策dp[i][a][b]

代码:

#include <iostream>

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <string>

using namespace std;

#define MAXN 11

int dp[MAXN*10][100][100];

int line[MAXN*10],sum[MAXN*10],s[MAXN*10];

string str[MAXN*10];

int t;

bool OK(int x)

{

    if(x&(x>>1)) return false;

    if(x&(x>>2)) return false;

    return true;

}

int getsum(int x)

{

    int ret=0;

    while(x)

    {

        ret+=(x&1);

        x>>=1;

    }

    return ret;

}

void pre_solve(int m)

{

    for(int i=0; i<(1<<m); i++)

        if(OK(i))

        {

            s[t]=i;

            sum[t]=getsum(i);

            t++;

        }

}

int main()

{

    int n,m;

    while(cin>>n>>m)

    {

        memset(dp,0,sizeof(dp));

        memset(line,0,sizeof(line));

        for(int i=1; i<=n; i++) cin>>str[i];

        for(int i=1; i<=n; i++)

            for(int j=0; j<m; j++)

                line[i]|=(str[i][j]=='P'?1:0)<<j;

        t=0;

        pre_solve(m);

        for(int i=0; i<t; i++)

            if((s[i]&line[1])==s[i])

                dp[1][i][0]=sum[i];

        for(int i=2; i<=n; i++)

            for(int a=0; a<t; a++)

                if((s[a]&line[i])==s[a])

                {

                    for(int b=0; b<t; b++)

                        if((s[b]&line[i-1])==s[b])

                            for(int c=0; c<t; c++)

                                if((s[c]&line[i-2])==s[c])

                                {

                                    if(!(s[a]&s[b])&&!(s[a]&s[c])&&!(s[b]&s[c]))

                                    {

                                        dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a]);

                                    }

                                }

                }

        int ans=0;

        for(int a=0; a<t; a++)

            for(int b=0; b<t; b++)

                ans=max(ans,dp[n][a][b]);

        cout<<ans<<endl;

    }

    return 0;

}

你可能感兴趣的:(poj)