POJ 3264 Balanced Lineup -- RMQ或线段树

一段区间的最值问题,用线段树或RMQ皆可。两种代码都贴上:又是空间换时间。。

RMQ 解法:(8168KB 1625ms)

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

#include <cstdlib>

using namespace std;

#define N 50003



int a[N],dmin[N][20],dmax[N][20],n;



void RMQ_init()

{

    int i,j;

    for(i=1;i<=n;i++)

        dmin[i][0] = dmax[i][0] = a[i];

    for(j=1;(1<<j)<=n;j++)

    {

        for(i=1;i+(1<<j)-1<=n;i++)

        {

            dmin[i][j] = min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);

            dmax[i][j] = max(dmax[i][j-1],dmax[i+(1<<(j-1))][j-1]);

        }

    }

}



int RMQ(int l,int r)

{

    int k = 0;

    while((1<<(k+1)) <= r-l+1)

        k++;

    return max(dmax[l][k],dmax[r-(1<<k)+1][k]) - min(dmin[l][k],dmin[r-(1<<k)+1][k]);

}



int main()

{

    int q,i;

    while(scanf("%d%d",&n,&q)!=EOF)

    {

        for(i=1;i<=n;i++)

            scanf("%d",&a[i]);

        RMQ_init();

        while(q--)

        {

            int l,r;

            scanf("%d%d",&l,&r);

            if(l>r)

                swap(l,r);

            printf("%d\n",RMQ(l,r));

        }

    }

    return 0;

}
View Code

 

线段树解法:(1172KB  2297ms)

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

#include <cstdlib>

using namespace std;

#define N 50003



struct node

{

    int maxi,mini;

}tree[4*N];



void pushup(int rt)

{

    tree[rt].maxi = max(tree[2*rt].maxi,tree[2*rt+1].maxi);

    tree[rt].mini = min(tree[2*rt].mini,tree[2*rt+1].mini);

}



void build(int l,int r,int rt)

{

    if(l == r)

    {

        scanf("%d",&tree[rt].maxi);

        tree[rt].mini = tree[rt].maxi;

        return;

    }

    int mid = (l+r)/2;

    build(l,mid,2*rt);

    build(mid+1,r,2*rt+1);

    pushup(rt);

}



int query_max(int l,int r,int aa,int bb,int rt)

{

    if(aa>r || bb<l)

        return -100000;

    if(aa<=l && bb>=r)

        return tree[rt].maxi;

    int mid = (l+r)/2;

    return max(query_max(l,mid,aa,bb,2*rt),query_max(mid+1,r,aa,bb,2*rt+1));

}



int query_min(int l,int r,int aa,int bb,int rt)

{

    if(aa>r || bb<l)

        return 100000000;

    if(aa<=l && bb>=r)

        return tree[rt].mini;

    int mid = (l+r)/2;

    return min(query_min(l,mid,aa,bb,2*rt),query_min(mid+1,r,aa,bb,2*rt+1));

}



int main()

{

    int n,q,i;

    while(scanf("%d%d",&n,&q)!=EOF)

    {

        build(1,n,1);

        for(i=1;i<=q;i++)

        {

            int l,r;

            scanf("%d%d",&l,&r);

            if(l>r)

                swap(l,r);

            printf("%d\n",query_max(1,n,l,r,1)-query_min(1,n,l,r,1));

        }

    }

    return 0;

}
View Code

你可能感兴趣的:(poj)