本题要求编写程序,顺序输出给定字符串中所出现过的大写英文字母,每个字母只输出一遍;若无大写英文字母则输出“Not Found”。
输入为一个以回车结束的字符串(少于80个字符)。
按照输入的顺序在一行中输出所出现过的大写英文字母,每个字母只输出一遍。若无大写英文字母则输出“Not Found”。
FONTNAME and FILENAME
FONTAMEIL
fontname and filrname
Not Found
#include
int main()
{
char ch[81],c[81];
gets(ch);
int i,j=0,h;
for(i=0;ch[i]!='\0';i++)
{
if(ch[i]>='A'&&ch[i]<='Z')
c[j++]=ch[i];
}
for(i=0;i
8-2-10 IP地址转换
一个IP地址是用四个字节(每个字节8个位)的二进制码组成。请将32位二进制码表示的IP地址转换为十进制格式表示的IP地址输出。
输入格式:
输入在一行中给出32位二进制字符串。
输出格式:
在一行中输出十进制格式的IP地址,其由4个十进制数组成(分别对应4个8位的二进制数),中间用“.”分隔开。
输入样例:
11001100100101000001010101110010
输出样例:
204.148.21.114
法一:
#include
#include
int main()
{
int i,sum[4]={0,0,0,0},j=0,h=0,tmp=0;
char arr[33];
for(i=0;i<32;i++)
scanf("%c",&arr[i]);
for(i=31;i>=0;i--)
{
tmp+=(arr[i]-48)*pow(2,j);
j++;
if(j==8)
{
sum[h++]=tmp;
tmp=0;
j=0;
}
}
printf("%d",sum[3]);
for(i=2;i>=0;i--)
{
printf(".%d",sum[i]);
}
return 0;
}
法二:
#include
int main()
{
int a[4][8], i, j, b[4] = { 0,0,0,0 }, temp;
char c[4][9];
for (i = 0; i < 4; i++)
{
for (j = 0; j < 8; j++)
{
scanf("%c", &c[i][j]);
a[i][j] = c[i][j] - 48;
}
}
for (i = 0; i < 4; i++)
{
for (j = 0; j < 8; j++)
{
b[i] += a[i][j] * pow(2, 7 - j);
}
}
printf("%d", b[0]);
for (i = 1; i < 4; i++)
{
printf(".%d", b[i]);
}
return 0;
}
你可能感兴趣的:(算法,数据结构)
- RTK负载(4K可见光+高分热成像+超广角+激光测距)四光AI智能识别跟踪吊舱技术详解
无人机技术圈
无人机技术人工智能
无人机+光电吊舱的RTK负载(4K可见光+高分热成像+超广角+激光测距)AI智能识别跟踪吊舱技术是一种高度集成和先进的无人机观测系统。系统结合了无人机的飞行能力和光电吊舱的多功能传感器,通过集成RTK(实时动态差分定位)技术、4K可见光摄像头、高分热成像仪、超广角镜头和激光测距仪,以及AI智能识别跟踪算法,实现了对地面目标的精准观测、识别、跟踪和测量。以下是该技术的主要特点和功能详解:1.4K可见
- 双光吊舱应用行业!!
云卓SKYDROID
无人机云卓科技知识高科技双光吊舱
1.军事领域侦察与监视:双光吊舱能够全天候、全气候地提供高清图像数据,支持军事侦察和监视任务。通过可见光相机和红外热成像仪的结合,吊舱可以在白天和夜晚、晴天和恶劣天气条件下,为无人机等空中平台提供清晰的战场图像,帮助指挥人员做出准确的决策。目标识别与跟踪:吊舱内置的目标识别算法能够实现对远距离目标的追踪、摄像和监控,特别是在夜间或恶劣天气条件下,红外热成像技术能够发挥重要作用。远程打击:无人机搭载
- 实现能源高效利用、优化能源结构、降低碳排放的智慧能源开源了
AI服务老曹
能源开源人工智能大数据自动化云计算
简介AI视频监控平台,是一款功能强大且简单易用的实时算法视频监控系统。愿景在最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,减少企业级应用约95%的开发成本,用户仅需在界面上简单操作,即可实现全视频的接入及布控。基础项目搭建地址参考:yihecode-server:本项目基于ai场景而开发,提供算法模型管理、摄像头管理、告警管理、数据统计等功能。系统根
- 【JVM系列】谈一谈JVM调优
goyeer(工蚁)
#JVMJAVAjvm
文章目录一、JVM调优概述二、JVM调优目标三、JVM定位瓶颈四、JVM内存调优1.调整堆内存大小2.调整新生代与老年代比例3.元空间(Metaspace)调优五、垃圾回收(GC)调优**1.选择合适的GC算法****2.优化GC参数**3.启用GC日志六、线程与锁优化七、调优后的验证八、注意事项一、JVM调优概述JVM调优是优化Java应用程序性能的关键环节,目的是通过调整JVM参数、优化垃圾回
- 数据结构--双向链表,双向循环链表
\&会飞的鱼_
数据结构链表
双向链表的头插,尾插,头删,尾删头文件:(head.h)#include#includetypedefchardatatype;typedefstructnode{datatypedata;structnode*next;structnode*prev;}*Doublelink;DoublelinkCreate_node();Doublelinkinsert(Doublelinkhead,data
- DeepSeek对AI领域的变革性影响分析报告
芝士AI吃鱼
人工智能DeepSeekOpenAI
一、引言近年来,人工智能(AI)技术加速演进,而中国开源大模型DeepSeek的崛起,标志着全球AI竞争进入新阶段。其凭借低成本、高性能、开源生态三大核心优势,迅速成为行业焦点。本报告从技术、产业、投资、就业及未来趋势等维度,全面解析DeepSeek对AI领域的深远影响,为集团战略布局提供参考。二、技术突破:算法效率与成本革命架构创新:MOE与MLA技术优化DeepSeek采用混合专家系统(MoE
- DeepSeek对AI发展的范式革新与推动:研究报告
芝士AI吃鱼
DeepSeekAIOpenAILLM
DeepSeek对AI发展的范式革新与推动:研究报告一、技术范式的突破:从“算力堆砌”到“极致工程化”DeepSeek的成功标志着AI发展从依赖大规模算力投入向算法优化与工程效率的转变。其核心技术突破包括:低算力消耗的模型训练通过蒸馏训练策略、动态模型剪枝和稀疏训练,DeepSeek将训练成本降至OpenAI同类模型的1/10,同时保持性能可比甚至超越。例如,其训练成本仅558万美元,而OpenA
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- Java 实现 Redis中的GEO数据结构
潇凝子潇
javaredis数据结构
Java实现Redis中的GEO数据结构LBS(基于位置信息服务(Location-BasedService,LBS))应用访问的数据是和人或物关联的一组经纬度信息,而且要能查询相邻的经纬度范围,GEO就非常适合应用在LBS服务的场景中importjava.util.ArrayList;importjava.util.List;//定义一个表示地理位置的类,用于存储地理位置的相关信息publicc
- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- 每日一题——力扣——最长连续递增序列
爱编程的晖哥
力扣刷题leetcode算法职场和发展
题目来源于力扣——画解算法:674.最长连续递增序列-最长连续递增序列-力扣(LeetCode)(leetcode-cn.com)给定一个未经排序的整数数组,找到最长且连续递增的子序列,并返回该序列的长度。连续递增的子序列可以由两个下标l和r(l
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- vue +element UI form表单校验数组嵌套,数组对象必填校验
i'm wxm
vue.jsjavascript前端
使用element表单时会出现数组对象类型的数据结构并且需要必填校验data(){return{//表单中出现像jsonList这样的数组对象数据editForm:{script:'',paramJsonList:[{paramName:'',paramaValue:''}]},//表单校验editFormRule:{script:[{required:true,message:'请填写',tri
- 量子计算机可以破解比特币吗
weixin_49526058
量子计算区块链智能合约信任链去中心化分布式账本web3
量子计算机可能会对当前的加密算法(包括比特币使用的椭圆曲线加密)带来极大的挑战,尤其是因为它能够使用Shor算法高效地解决离散对数问题。然而,具体到量子计算机破解比特币私钥的情况,需要从以下几个方面深入理解:1.Shor算法与离散对数问题Shor算法是由数学家彼得·肖(PeterShor)在1994年提出的一种量子算法,它可以在多项式时间内解决两类经典计算机难以处理的问题:整数分解问题:这涉及RS
- 什么是3D视觉无序抓取?
视觉人机器视觉
机器视觉3D3d人工智能视觉检测计算机视觉c#
3D视觉无序抓取是一种结合三维视觉技术、机器人控制与智能算法的工业自动化解决方案,旨在实现机器人对散乱、无序堆放的物体进行自主识别、定位和抓取的操作。其核心是通过3D视觉系统获取物体的三维空间信息,结合路径规划与避障算法,引导机械臂完成高精度抓取任务,无需依赖预先设定的固定程序或工装夹具。以下是其关键要点:核心组成与技术原理三维视觉感知:采用3D相机(如结构光、双目视觉、ToF技术)扫描物体表面,
- DCIM资源模型设计方案
杨正同学
DCIM产品与架构需求分析DCIM资源模型CMDB
目的根据管理的目的的不同,机房设备的数据模型设计应包含两个部分:配置模型(配置管理模型CMDB)和监控模型(类物联网通讯模型)。配置模型围绕资产管理,将各种类型的资源进行数据化,通过结构化的数据结构和体系,对企业所有有形和无形的资产展开全面的管理,满足为资产管理状况进行评估,提升资产管理效率的目的。资产信息管理的对象并不局限于单纯的物理设备,凡是具有物理实体的设备、人员、以及生产涉及的相关流程都可
- Matlab 机器人 雅可比矩阵
CodingAlgo
算法
===工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(四)——雅可比矩阵_staubli机器人正逆向运动学实例验证matlab-CSDN博客===matlab求雅可比矩阵_六轴机械臂矢量积法求解雅可比矩阵-CSDN博客===(63封私信/80条消息)MATLAB机器人工具箱中机器人逆解是如何求出来的?-知乎===https://zhuanlan.zhihu.com/p/638
- 嵌入式编程——数据结构与linux编程
做自己'S Catanin
数据结构linuxc#
根据dict.txt文件中的内容,用户输入单词获得单词含义#include"public.h"intmain(void){structlist_head*parray=NULL;FILE*fp=NULL;char*nret=NULL;char*pword=NULL;char*pparaphrase=NULL;intnum=0;charstr[1024]={0};charword[256]={0};
- Cesium中级开发教程之三十四:单体化模型
CesiumMaster
Cesium开发教程前端javascriptCesiumhtml
一、效果图在3D地理场景中,数据通常以群体的形式呈现,例如城市中的建筑可能是一个整体的3D模型。单体化就是将这些群体数据中的每个独立对象分离出来,使其能够被单独识别和操作。这样可以为用户提供更精细的交互体验,比如单独选中某一栋建筑进行信息查询,或者对某一个设施进行高亮显示。1、数据格式基础语义信息嵌入:支持单体化的数据格式,如i3dm、pnts、b3dm等,会在数据结构里嵌入每个独立对象的语义信息
- 计算机视觉如何快速入门?
Frunze软件开发
日常问题回答开发语言计算机视觉工业异常检测论文
目录1.明确研究方向2.学习基础知识3.掌握核心算法4.实践项目5.阅读文献6.复现经典论文7.改进与创新总结计算机视觉(ComputerVision)是一个复杂且广泛的领域,尤其是工业异常检测这种特定方向,需要结合理论知识和实践技能。以下是一些具体的、可操作的建议,也是个人实际路径的一个总结,希望可以帮助到你快速入门并完成一篇论文。1.明确研究方向-工业异常检测的核心是识别图像或视频中的异常区域
- 【信息学奥赛一本通 C++题解】1286:怪盗基德的滑翔翼
信奥大黄
信息学奥赛一本通c++算法
信息学奥赛一本通(C++版)在线评测系统基础算法第一节动态规划的基本模型1286:怪盗基德的滑翔翼1.理解题意同学们,我们一起来看怪盗基德遇到的这个有趣问题哦。怪盗基德成功偷到了钻石,可倒霉的是他的滑翔翼动力装置被柯南破坏了。现在他在一个城市里,这个城市有一排建筑,一共有N幢,而且每幢建筑的高度都不一样呢。基德可以从这一排建筑中的任意一幢的顶部开始他的逃跑旅程哦。不过他有两个限制条件:一是他只能朝
- 图论- 经典最小生成树算法
左灯右行的爱情
图论算法
最小生成树算法什么是最小生成树Kruskal算法关键代码实现Prim最小生成树算法Kruskal和Prim算法的区别为什么Prim算法不需要判断成环,但Kruskal需要什么是最小生成树在图中找一棵包含图中所有节点的树,且权重和最小的那棵树就叫最小生成树.如下:右侧生成树的权重和显然比左侧生成树的权重和要小。(但是它并不是最小的,这里只是比较一下不同的树)Kruskal算法最小生成树是若干条边的集
- 【Java集合】 HashMap底层原理 和 Hash冲突的解决方法
wy02_
面试java
HashMapHashMap底层数据结构底层数据结构:hash表数据结构,即数组+链表|红黑树往HashMap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,当出现hash相同的key如果key相同,则覆盖原始值如果key不相同(hash冲突),则将当前数据放入链表或红黑树中获取数据时,对key进行hash运算,找到数组中对象的hash值下标,在进
- 基于C语言的单向链表按“索引”插入或者删除某节点实现
張三600
c语言链表数据结构
正文在学习学堂在线西安科技大学的数据结构与算法课程后,我基于课程的伪代码实现了单向链表的插入和删除操作。以下代码展示了如何建立一个带有一个空数据头结点和五个数据节点的单向链表,以及如何在链表的指定索引位置插入和删除节点。以下是完整的代码实现:#include#include//结构体声明typedefstructLNode{intdata;//链表节点数据域structLNode*next;//链
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 单链表基本操作(C语言版)
邂逅you
数据结构数据结构ptac语言开发语言数据结构算法链表
7-1单链表基本操作分数45作者朱允刚单位吉林大学请编写程序实现单链表插入、删除结点等基本算法。给定一个单链表和一系列插入、删除结点的操作序列,输出实施上述操作后的链表。单链表数据域值为整数。输入格式:输入第1行为1个正整数n,表示当前单链表长度;第2行为n个空格间隔的整数,为该链表n个元素的数据域值。第3行为1个正整数m,表示对该链表施加的操作数量;接下来m行,每行表示一个操作,为2个或3个整数
- 【探索C++】友元
祐言QAQ
探索C++编程开发语言c++linuxjavahttps网络
(꒪ꇴ꒪),Hello我是祐言QAQ我的博客主页:C/C++语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP快上,一起学习,让我们成为一个强大的攻城狮!送给自己和读者的一句鸡汤:集中起来的意志可以击穿顽石!作者水平很有限,如果发现错误,请在评论区指正,感谢在C++中,友元(friend)是一种特殊的关系,它允许一个类或函数访问另一个类的私有成员。通过友元关系,一个类可以将其他类或函
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟