代码随想录算法训练营day45:动态规划part12:115.不同的子序列;583. 两个字符串的删除操作;72. 编辑距离

目录

115.不同的子序列

分析:

583. 两个字符串的删除操作

72. 编辑距离


115.不同的子序列

力扣题目链接(opens new window)

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

题目数据保证答案符合 32 位带符号整数范围。

分析:

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,因为可能前面出现了和t[j-1]相同的字母,这种情况个数为dp[i - 1][j]。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

代码随想录算法训练营day45:动态规划part12:115.不同的子序列;583. 两个字符串的删除操作;72. 编辑距离_第1张图片

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

代码随想录算法训练营day45:动态规划part12:115.不同的子序列;583. 两个字符串的删除操作;72. 编辑距离_第2张图片

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

注意:如果发现数太大——变成unsigned long long

注意对循环边界的判断

int numDistinct(char* s, char* t) {
    long l1=strlen(t),l2=strlen(s);
    unsigned long long dp[l1+1][l2+1];
    memset(dp,0,sizeof(dp));

    for (long j=0;j

583. 两个字符串的删除操作

力扣题目链接(opens new window)

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

  • 输入: "sea", "eat"
  • 输出: 2
  • 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"
int minDistance(char* word1, char* word2) {
    int l1=strlen(word1),l2=strlen(word2);   
    int dp[l1+1][l2+1];//避免初始化麻烦;dp是最长公共子集,操作数=长度和-2*公共子集
    memset(dp,0,sizeof(dp));

    for (int i=1;i<=l1;i++){ //从1开始,长度可以取到
        for (int j=1;j<=l2;j++){
            //对于字符串来说是i-1,对于dp来说是i
            //结尾相同——那考虑没有结尾的时候,两个的选择
            if(word1[i-1] == word2[j-1] ) dp[i][j]=dp[i-1][j-1]+1; 
            //结尾不同,那么就是分别一边少一个结尾,取最大值
            else dp[i][j]=fmax(dp[i-1][j],dp[i][j-1]);
        }
    }
    return l1+l2-2*dp[l1][l2];
}

也可以正向思考:记录删除的最小次数

确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

确定递推公式

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

72. 编辑距离

力扣题目链接(opens new window)

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符

  • 删除一个字符

  • 替换一个字符

  • 示例 1:

  • 输入:word1 = "horse", word2 = "ros"

  • 输出:3

  • 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

  • 示例 2:

  • 输入:word1 = "intention", word2 = "execution"

  • 输出:5

  • 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

分析:

要考虑所有的推导情况

代码随想录算法训练营day45:动态规划part12:115.不同的子序列;583. 两个字符串的删除操作;72. 编辑距离_第3张图片

int minDistance(char* word1, char* word2) {
    int l1=strlen(word1);
    int l2=strlen(word2);
    int dp[l1+1][l2+1];//最小替换次数
    memset(dp,0,sizeof(dp));
    for (int i=0;i<=l1;i++){
        dp[i][0]=i;
    }    
    for (int j=1;j<=l2;j++) dp[0][j]=j;
    for(int i=1;i<=l1;i++){
        for(int j=1;j<=l2;j++){
            if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];
            else dp[i][j]=fmin(dp[i-1][j-1],fmin(dp[i-1][j],dp[i][j-1]))+1;
            //dp[i-1][j-1]+1补上了一个替换
            //dp[i-1][j]补一个删减
            //dp i j-1 补一个增加
        }
    }
    return dp[l1][l2];
}

你可能感兴趣的:(算法,动态规划,leetcode,数据结构)