- AI产品经理技术篇:AI领域常用术语解析
让我看看好学吗
人工智能产品经理机器学习深度学习学习
作为AI产品经理,深入理解人工智能领域的核心术语是高效沟通、需求定义和产品落地的关键。无论是与算法工程师协作优化模型,还是向业务方解释技术方案,准确掌握专业术语能显著提升决策效率,避免因概念混淆导致的开发偏差。本文系统梳理了模型与算法、NLP(自然语言处理)、CV(计算机视觉)、数据处理、核心评估指标等领域的核心术语,帮助产品经理快速构建AI技术认知框架。目录1.基础概念2.模型与算法3.自然语言
- 元宇宙养老社区:数字化照护的创新实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战AI人工智能与大数据大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《元宇宙养老社区:数字化照护的创新实践》关键词元宇宙养老社区数字化照护虚拟现实人工智能大数据物联网摘要本文深入探讨了元宇宙养老社区的概念、技术架构及其在数字化照护中的应用。通过分析虚拟现实、人工智能、大数据和物联网等核心技术,本文详细阐述了元宇宙养老社区的架构设计、项目实施、运营管理与用户体验优化。同时,本文还展望了元宇宙养老社区的潜在市场、技术发展趋势以及未来挑战与机遇。文章目录《元宇宙养老社区
- AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎
SuperAGI2025
AI大模型应用开发宝典AIGCai
AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎关键词:AIGC、MCP模型、上下文协议、数字化转型、人工智能、内容生成、语义理解摘要:本文深入探讨AIGC(人工智能生成内容)领域的MCP(多模态上下文感知)模型及其上下文协议,揭示其如何成为推动行业数字化转型的新引擎。我们将从基础概念出发,逐步解析MCP模型的技术原理、实现方法和应用场景,并通过实际案例展示其在各行业的创新应用。文章还
- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 家用充电桩远程监控安全管理系统解决方案
蓝蜂物联网
物联网远程监控边缘计算物联网
家用充电桩远程监控安全管理系统解决方案在当今电动汽车日益普及的背景下,家用充电桩的安全管理成为了广大车主关注的重点问题。为了实现对充电桩的高效、精准、远程监控,一套完善的家用充电桩远程监控安全管理系统解决方案应运而生。本方案旨在通过先进的物联网技术、云计算、大数据分析以及人工智能等科技手段,构建一个集实时监测、异常预警、故障诊断、数据统计、远程控制于一体的智能化平台,确保充电桩的安全运行及用户充电
- 为什么 Python 是 AI 的首选语言?
文章目录一、简洁优雅,易于上手二、丰富的库和框架1.数据处理与分析2.数据可视化3.机器学习与深度学习框架三、强大的社区支持四、跨平台性和可移植性五、与其他语言的互操作性文章配套代码已上传,点击查看:https://download.csdn.net/download/2501_92578370/91180848在人工智能(AI)技术飞速发展的今天,编程语言的选择对AI开发者来说至关重要。当你翻开
- 【Python基础】13 知识拓展:CPU、GPU与NPU的区别和联系
智算菩萨
python开发语言人工智能
引言:处理器大战背后的技术革命在人工智能蓬勃发展的今天,我们经常听到CPU、GPU、NPU这些术语,但你是否真正理解它们之间的区别和联系?作为Python开发者,我们更关心的是:在什么场景下选择哪种处理器?如何在Python中充分发挥它们的性能优势?这篇文章将从技术原理出发,结合Python实战代码,深入解析这三种处理器的特点、应用场景和发展趋势,帮助你在面对不同计算任务时做出最优选择。第一章:C
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
Java八股文
python人工智能开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- 世界人工智能大会在即,中国AI布局展现多重深意
未来智慧谷
人工智能世界人工智能大会(WAIC)
2025年世界人工智能大会(WAIC)将于7月26日至28日在上海举行。本次大会以“智能时代同球共济”为主题,展览面积首次突破7万平方米,汇聚了来自30余个国家和地区的1200余位嘉宾,其中包括12位图灵奖、诺贝尔奖得主及80余位中外院士。这一全球性平台的搭建,揭示了中国在人工智能领域深化发展的战略路径。技术展示:从模型开源到终端落地本届大会将呈现3000余项前沿展品,涵盖40余款大模型、60余款
- 全面学习 OpenAI API:从 Python 教程到 API Key 使用详解,快速上手调用和部署
我的学校你进不来
学习python开发语言人工智能语言模型深度学习
说在前面我们正身处在人工智能迅猛发展的时代,OpenAIAPI无疑是其中的翘楚,它提供了强大的工具,让开发者能够创建智能应用程序。然而,对于许多刚接触这个领域的开发者来说,如何开始使用OpenAIAPI可能是一个不小的挑战。这篇文章旨在全面介绍如何从零开始学习和使用OpenAIAPI,从申请APIKey到在Python中调用和部署,助力你快速上手并实现在项目中的应用。在接下来的内容中,我们将详细阐
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 通义灵码+DeepSeek:国产代码生成王炸组合,带你飞!
引言在人工智能飞速发展的当下,AI代码生成工具如雨后春笋般涌现,为开发者们带来了前所未有的编程体验。其中,国产的通义灵码结合DeepSeek模型异军突起,成为众多开发者关注的焦点。它们凭借强大的功能和出色的表现,在代码生成领域崭露头角,不仅提升了开发效率,还为编程工作流注入了新的活力。然而,如同任何新兴技术一样,在使用过程中也会遇到各种问题和挑战。本文将通过实测,深入剖析通义灵码与DeepSeek
- uni-app 多端开发中 AI 的集成与适配:一次开发,智能多端运行
欧阳天羲
大前端与AI的深度融合#AI与大前端框架结合篇uni-app人工智能前端
一、引言:uni-app与AI多端集成的背景在当今跨平台开发趋势下,uni-app凭借"一次编写,多端运行"的特性成为企业级应用开发的首选框架之一。随着人工智能技术的普及,将AI能力集成到多端应用中已成为提升用户体验的关键需求。然而,小程序、APP、Web等不同端的运行环境差异显著,如何实现AI功能的统一集成与高效适配成为开发难点。本文将系统讲解在uni-app框架中集成AI能力的完整方案,涵盖跨
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- 免费学中医,这些优质资源不容错过
少林659
零基础学中医免费学中医
零基础学中医,学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts想入门中医却担心成本太高?其实有不少免费又优质的学习资源,问止中医的系列免费课程就是其中的佼佼者,涵盖理论与实操,满足不同学习者的需求。问止中医旗下的精一书院,是免费学中医的绝佳平台。由问止中医联合创始人林大栋博士主讲,课程聚焦中医结构分析、人工智能中医大脑技术
- 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
司南锤
LLM人工智能
引言在人工智能快速发展的今天,大语言模型(LLM)的推理能力一直是研究的热点。从最初的直接问答,到链式思维(ChainofThoughts,CoT)的出现,再到如今的思维树(TreeofThoughts,TOT),AI的推理方式正在变得越来越接近人类的思维过程。思维树作为一种全新的推理框架,不仅继承了链式思维的优势,更通过树状结构的探索和回溯机制,实现了更加复杂和深入的推理过程。本文将深入探讨TO
- AttributeError: module ‘openai‘ has no attribute ‘ChatCompletion‘解决方案
爱编程的喵喵
Python基础课程pythonAttributeErroropenaiChatCompletion解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了AttributeError:mod
- RAG技术全面对比研究:探索最优检索增强生成策略
检索增强生成(RAG)技术全景解析:从基础到前沿在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-AugmentedGeneration(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮
- 【人工智能】 AI的进化之路:大模型如何重塑技术格局
蒙娜丽宁
Python杂谈人工智能人工智能python
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界本文深入探讨了人工智能大模型的进化历程及其对技术格局的深远影响。从早期神经网络到现代大模型的突破,文章分析了关键技术进步,如Transformer架构、预训练机制和分布式计算。结合数学公式和代码示例,详细阐述了大模型的训练原理、优化方法及实际应用场景。文
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- 探秘AI的秘密:leaked-system-prompts
人工智能我来了
人工智能AI人工智能
揭秘:揭秘系统提示合集背后的秘密在当今这个人工智能技术迅速发展的时代,了解和使用大型语言模型(LLM)已成为技术爱好者、开发者和研究人员的共同目标。而作为核心组成部分,系统提示(systemprompts)的设计和应用直接影响了LLM的表现和功能。今天,我们将为大家揭示一个神秘而又充满吸引力的项目——“leaked-system-prompts”。这个项目为我们打开了一扇窥探这些大型语言模型系统提
- 代码探秘人工智能
万能小贤哥
人工智能
当你在手机上用语音发送消息,当短视频平台精准推送你感兴趣的内容,当智能音箱陪你聊天解闷,背后都有一位“隐形伙伴”——人工智能。它就像从科幻电影中走出的神奇力量,正悄然改变着我们的生活。今天,就让我们借助简单的Python代码,开启一场探索人工智能奥秘的奇妙之旅!人工智能:计算机的“超能力大脑”想象一下,如果给计算机装上“大脑”,让它学会像人类一样思考、学习和解决问题,会发生什么?这就是人工智能(A
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite