- 马斯克-全球最大算力集群-grok3效果任何
数据分析能量站
机器学习人工智能
就在刚刚,科技界巨头埃隆・马斯克正式揭晓了x.AI旗下的最新力作——Grok3。一经发布,Grok3便凭借其卓越表现,被赞誉为全球范围内最具智慧与力量的人工智能。(有待继续观察)作为x.AI精心打造的新型聊天机器人,Grok3展现出了令人惊叹的推理天赋,面对复杂问题时,能够凭借严密逻辑抽丝剥茧,给出精准解答。不仅如此,它还配备了如DeepSearch(深度搜索)这般的前沿功能,让信息获取与知识挖掘
- 人工智能专业毕业设计题目精选:推荐合集
HaiLang_IT
毕业设计选题计算机视觉人工智能目标检测
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 跨语言语义理解与生成:多语言预训练方法及一致性优化策略
网罗开发
AI大模型人工智能深度学习负载均衡
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- AI赋能下的2025商业新契机:AI无人自动直播引领财富增长
V__17671155793
人工智能pythonchatgptgpt-3gpt
AI赋能下的2025商业新契机:AI无人自动直播引领财富增长!在科技飞速发展的时代,每一次重大的技术突破都有可能重塑商业格局,创造全新的财富机遇。如今,随着人工智能技术的深度应用,AI无人自动直播正成为2025年最具潜力的造富新赛道,为广大商家提供了前所未有的发展契机,助力其在激烈的市场竞争中展翅腾飞。一、传统直播困境与AI无人自动直播的破局之道回顾直播行业的发展历程,传统直播模式在经历了初期的爆
- 主要空间数据挖掘方法
CodeYoung7
总结归纳数据挖掘地理信息
文章出自:http://blog.csdn.net/shaoz/article/details/6847925张新长马林兵等,《地理信息系统数据库》[M],科学出版社,2005年2月第二章第二节空间数据空间数据挖掘是多学科和多种技术交叉综合的新领域,其挖掘方法以人工智能、专家系统、机器学习、数据库和统计等成熟技术为基础。下面介绍近年来出现的主要空间数据挖掘方法。1、空间分析方法利用GIS的各种空间
- ChatGPT和DeepSeek打造科研与办公的高效引擎
AAIshangyanxiu
编程算法统计语言农林生态遥感chatgpt
一、2024大语言模型最新进展与ChatGPT各模型讲解1、2024AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)2、国内外大语言模型(ChatGPT4O、Gemini、Claude、Llama3、PerplexityAI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析3、OpenAI12天12场直播新功能解读与演示(ChatGPTO1模
- DeepSeek混合专家模型:低成本高精度革新多语言AI应用
智能计算研究中心
其他
内容概要当前人工智能领域正经历从通用模型向垂直化、场景化应用的关键转型,DeepSeek混合专家模型(MoE)通过突破性的架构设计,为这一进程提供了技术范本。该模型采用分治策略的混合专家架构,通过动态激活670亿参数中的子模块处理特定任务,既保证了模型规模带来的知识广度,又显著降低了计算资源的冗余消耗。在此基础上,其多模态处理能力不仅覆盖80余种自然语言的高精度互译,还实现了视觉符号与文本语义的跨
- 23. AI-概述
真上帝的左手
23.AIai人工智能
文章目录前言一、AI1.简介2.发展3.应用场景前言AI 随着技术的发展,AI正变得越来越强大和普及,其在解决复杂问题和提高人类生活质量方面的潜力日益显现。一、AIAI(ArtificialIntelligence,人工智能)1.简介 AI(ArtificialIntelligence,人工智能)是计算机科学的一个分支,旨在开发智能系统,使其能够执行通常需要人类智能的任务,例如学习、推理、问
- 国外7个最佳大语言模型 (LLM) API推荐
程序员后端
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- Ubuntu22.4.03服务器版安装及搭建深度学习环境的问题总结
蜡笔小祎在线学习
问题集合深度学习人工智能
Ubuntu22.4.03服务器版安装流程整个流程已经有很多分享帖了,这里概述一下:下载iso制作启动U盘,按f2进入安装,选择语言,键盘布局english,ubuntuserver安装,DHCP自动配置网络(问题1),代理服务器我们没填,配置阿里云镜源http://mirrors.aliyun.com/ubuntu/,磁盘分区(问题2),设置服务器密码,安装ssh远程工具,重启reboot。可参
- OpenAI揭示o3的推理过程,以弥合与DeepSeek-R1的差距
c++服务器开发
人工智能deepseek
生成式人工智能开发商OpenAI公司首席执行官SamAltman最近在RedditAMA问答活动中承认,该公司在开源软件研究方面站在了“历史错误的一边”。尽管OpenAI公司尚未发布其开源模型,但已经迈出了提高透明度的第一步。正如该公司在其X帐号上所宣布的那样,其最新的推理模型o3-mini现在展示了其思维链(CoT)跟踪的更详细版本。此前,OpenAI公司的推理模型仅展示了CoT的高级概述,这使
- ptython setup.py install 设置python包编译时的并行数
leo0308
基础知识Pythonpythonpytorch3d
通过源码编译安装pytorch3d的时候,直接执行pythonsetup.pyinstall时,默认开的并行数很多,有10几个,直接导致机器卡死。通过设置下面的环境变量,可以设置较小的并行数,避免占用过多的资源。exportMAX_JOBS=4设置后,同时只有4个编译的进程。
- 【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析...
985小水博一枚呀
论文解读深度学习目标检测YOLO人工智能算法架构网络
【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…文章目录【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解
- 探索AI音乐创作的未来:八款顶尖AI音乐生成工具(本期介绍国外-国内另外专题介绍)
带娃的IT创业者
AIGC程序员创富人工智能音视频ai
探索AI音乐创作的未来:八款顶尖AI音乐生成工具(本期介绍国外-国内另外专题介绍)在科技飞速发展的今天,人工智能(AI)已经渗透到我们生活的方方面面,其中音乐创作也不例外。AI音乐生成工具不仅为专业音乐人提供了新的创作方式,也让普通人能够轻松创作出高质量的音乐作品。本文将介绍八款知名的AI音乐生成工具,帮助你了解它们的特点和优势。1.SunoSuno是一款AI驱动的音乐生成器,能够快速创建高质量的
- 深入理解DAG任务调度系统:核心原理与实现
AI天才研究院
计算Python实战编程实践python算法dag
1.背景介绍随着大数据、人工智能等领域的发展,任务调度系统的重要性日益凸显。DirectedAcyclicGraph(DAG)任务调度系统是一种常见的任务调度系统,它可以有效地解决多个依赖关系复杂的任务调度问题。本文将深入探讨DAG任务调度系统的核心原理和实现,为读者提供一个深入的理解。1.1背景介绍1.1.1任务调度系统简介任务调度系统是计算机科学中一个重要的研究领域,它主要关注于在并行计算系统
- Python从0到100(三十九):数据提取之正则(文末免费送书)
是Dream呀
pythonmysql开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 接入DeepSeek后,智慧园区安全调度系统的全面提升
Guheyunyi
安全数据分析python智慧城市人工智能信息可视化
随着人工智能技术的快速发展,智慧园区的安全管理正逐步向智能化、自动化方向迈进。DeepSeek作为先进的人工智能解决方案,为智慧园区安全调度系统注入了强大的技术动力。通过接入DeepSeek,智慧园区安全调度系统在多个方面实现了显著提升,进一步增强了园区的安全性、管理效率和用户体验。1.智能化监控:从被动到主动传统的监控系统主要依赖人工查看视频画面,容易出现漏检或误判。接入DeepSeek后,智慧
- 深度学习环境配置——Anaconda安装
tyyhmtyyhm
深度学习环境配置深度学习人工智能
目录Ⅰ.Windows系统安装Anaconda1.1下载安装Ⅱ.Linux系统安装Anaconda(适用于服务器安装)2.1下载2.2安装操作系统:windows11/ubuntu20/ubuntu18更新时间:20240221Ⅰ.Windows系统安装Anaconda1.1下载安装https://www.anaconda.com/download默认安装即可。Ⅱ.Linux系统安装Anacond
- 深度学习工厂的蓝图:拆解CUDA驱动、PyTorch与OpenCV的依赖关系
时光旅人01号
深度学习pytorchopencv
想象一下,你正在建造一座深度学习工厂,这座工厂专门用于高效处理深度学习任务(如训练神经网络)和计算机视觉任务(如图像处理)。为了让工厂顺利运转,你需要搭建基础设施、安装设备、设置生产线,并配备控制台来管理整个生产过程。以下是这座工厂的详细构建过程:1.工厂的基础设施:Ubuntu比喻:Ubuntu是工厂所在的土地和建筑,提供了基础设施和运行环境。作用:提供操作系统环境,支持安装和运行各种工具和框架
- (九万字)面向2025年BOSS直聘人工智能算法工程师高频面试题解析
快撑死的鱼
人工智能回归pythonpytorch
面向2025年BOSS直聘人工智能算法工程师高频面试题解析1.机器学习(ML)理论解析机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习、无监督学习和强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略(Q-learning-Wikipedia)。机器学
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- FakeApp 技术浅析(一)
爱研究的小牛
AIGC—深度伪造虚拟现实人工智能AIGC深度学习机器学习
FakeApp是一款早期的深度伪造(Deepfake)工具,最初于2018年发布,用于生成和编辑换脸视频。尽管FakeApp已经不再更新,但它在深度伪造技术的发展中起到了重要作用。1.技术背景与理论基础1.1生成对抗网络(GANs)生成对抗网络(GANs)是深度学习领域中的一种重要模型,由生成器(Generator)和判别器(Discriminator)组成。生成器负责生成逼真的数据(如图像、视频
- DeepSeek 赋能工业软件之全流程方案
爱吃青菜的大力水手
人工智能自动化持续部署语言模型开源
deepseek赋能工业软件之全流程方案之侧重半导体FABdeepseek在工业软件中的应用场景“deepseek”大模型在工业软件领域拥有广泛的应用场景,包括以下几个方面:智能调度:利用深度学习和优化算法,根据实时数据动态调整生产计划和资源分配。它可以综合考虑订单需求、设备状态和产能限制,智能生成最优的生产排程方案,减少等待时间和切换成本。例如在汽车制造工厂,deepseek可根据订单需求和设备
- 【人工智能时代】- AI 聚合平台
xiaoli8748_软件开发
人工智能时代人工智能
最近听朋友介绍,国内有个团队开发了一个全功能的AI聚合平台,包含主流的GPT和绘画功能,以及一些其他的衍生功能,几乎应有尽有。于是,对AI很感兴趣的我,便也来瞧瞧这是个什么样的存在,以下便是我的真实使用感受。除此以外,作为一个程序员,我还使用了该平台提供的API接口,开发了一个简单的小程序。文章的末尾,我将提供免费的AI机器人,以及小程序体验地址,记得查收哦~官方网站:https://302.ai
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- 深度学习之目标检测的常用标注工具
铭瑾熙
人工智能机器学习深度学习深度学习目标检测目标跟踪
1LabelImgLabelImg是一款开源的图像标注工具,标签可用于分类和目标检测,它是用Python编写的,并使用Qt作为其图形界面,简单好用。注释以PASCALVOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持COCO数据集格式。2labelmelabelme是一款开源的图像/视频标注工具,标签可用于目标检测、分割和分类。灵感是来自于MIT开源的一款标注工具Label
- 34、深度学习-自学之路-深入理解-NLP自然语言处理-RNN一个简单的程序,可以从程序中理解RNN的基本思想。
小宇爱
深度学习-自学之路深度学习自然语言处理rnn
importsys,random,mathfromcollectionsimportCounterimportnumpyasnpf=open('tasks_1-20_v1/en/qa1_single-supporting-fact_train.txt','r')raw=f.readlines()f.close()tokens=list()forlineinraw[0:1000]:tokens.ap
- DeepSeek-R1 技术全景解析:从原理到实践的“炼金术配方” ——附多阶段训练流程图与核心误区澄清...
雪停时偶遇一叶春
流程图
合集-人工智能(5)1.如何改进AI模型在特定环境中的知识检索2024-09-242.深度学习与统计学中的时间序列预测2024-10-033.《使用coze搭建一个会搜索、写ppt、思维导图的Agent》2024-10-294.深入浅出:Agent如何调用工具——从OpenAIFunctionCall到CrewAI框架01-145.DeepSeek-R1技术全景解析:从原理到实践的“炼金术配方”—
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- 【CUDA】Pytorch_Extensions
joker D888
深度学习pytorchpythoncudac++深度学习
【CUDA】Pytorch_Extensions为什么要开发CUDA扩展?当我们在PyTorch中实现自定义算子时,通常有两种选择:使用纯Python实现(简单但效率低)使用C++/CUDA扩展(高效但需要编译)对于计算密集型的操作(如神经网络中的自定义激活函数),使用CUDA扩展可以获得接近硬件极限的性能。本文将以实现一个多项式激活函数x²+x+1为例,展示完整的开发流程。完整CUDA扩展代码解
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi