- Spark 任务与 Spark Streaming 任务的差异详解
goTsHgo
spark-streaming分布式大数据sparkstreaming大数据分布式
Spark任务与SparkStreaming任务的主要差异源自于两者的应用场景不同:Spark主要处理静态的大数据集,而SparkStreaming处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。接下来,我们将从底层原理和源代码的角度详细解析Spark任务和SparkStreaming任务的差别。1.任务调度模型差异1.1Spark任务的调度模型Spark的任务调度基
- Python大数据之PySpark(三)使用Python语言开发Spark程序代码_windows spark python
2401_84181704
程序员大数据pythonspark
算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子Transformation算子Action算子步骤:1-首先创建SparkContext上下文环境2-从外部文件数据源读取数据3-执行flatmap执行扁平化操作4-执行map转化操作,得到(word,1)5-reduceByKey将相同Key的Value数据累加操作6-将结果输出到文件系统或打印代码:#-*-codi
- 《大数据时代“快刀”:Flink实时数据处理框架优势全解析》
程序猿阿伟
大数据flink
在数字化浪潮中,数据呈爆发式增长,实时数据处理的重要性愈发凸显。从金融交易的实时风险监控,到电商平台的用户行为分析,各行业都急需能快速处理海量数据的工具。Flink作为一款开源的分布式流处理框架,在这一领域崭露头角,备受瞩目。一、真正实时,毫秒级响应与部分将流处理模拟为微批处理的框架不同,Flink是专为实时流处理打造的“原生”引擎。它直接处理持续不断的事件流,无需将数据攒成批次再处理,这种设计赋
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- CDH_6.3.2的搭建
我的K8409
Flinklinux大数据分布式
一站式搭建大数据的应用1、前提条件和准备工作hostnamectlset-hostnamecdh01hostnamectlset-hostnamecdh02hostnamectlset-hostnamecdh032、修改IP和Host映射关系(所有节点)在window中也配置一下vim/etc/hosts192.168.92.201cdh01192.168.92.202cdh02192.168.9
- 大数据笔记之 Flink1.17 算子
凡许真
大数据flink1.17算子
文章目录前言一、Partition分区(物理分区)1.1随机分区shuffle1.2轮询分区rebalance1.3重缩放分区rescale1.4广播分区broadcast1.5全局分区global1.6keyby1.7自定义分区Custom二、transform2.1flatMap2.2filter2.3RichFunction2.4map三、Aggregate聚合3.1keyBy()3.2ma
- 01.双Android容器解决方案
高桐@BILL
容器Android
目录写在前面一,容器1.1容器的原理1.1.1Namespace1.1.2Cgroups(ControlGroups)1.1.3联合文件系统(UnionFileSystem)1.2容器的应用1.2.1微服务架构1.2.2持续集成和持续部署(CI/CD)1.2.3多租户环境1.2.4混合云和多云环境1.2.5大数据和机器学习1.2.6android应用场景1.3容器方案选型1.3.1Docker1.
- 监控易:智慧高校一体化综合运维解决方案
MXsoft618
运维信息安全物联网监控类
新冠疫情发生以来,线上线下教育模式的初探,促使学校、家长和社会对于教育信息化认识产生巨大的转变。伴随着云计算和物联网的发展,教育已经开启了一个全新的时代。自“十三五”规划中明确提出“支持各级各类学校建设智慧校园,综合利用互联网、大数据、人工智能和虚拟现实技术探索未来教育教学新模式”以来,政策春风也不断加码教育信息化进程,《教育信息化2.0行动计划》以及《智慧校园总体框架》的相继发布,全国各地都在积
- TDengine 做为 FLINK 数据源技术参考手册
TDengine (老段)
tdengineflink大数据涛思数据时序数据库数据库
ApacheFlink是一款由Apache软件基金会支持的开源分布式流批一体化处理框架,可用于流处理、批处理、复杂事件处理、实时数据仓库构建及为机器学习提供实时数据支持等诸多大数据处理场景。与此同时,Flink拥有丰富的连接器与各类工具,可对接众多不同类型的数据源实现数据的读取与写入。在数据处理的过程中,Flink还提供了一系列可靠的容错机制,有力保障任务即便遭遇意外状况,依然能稳定、持续运行。借
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- 守护每一比特的安全——探索基于差分隐私的MySQL数据脱敏之道
墨夶
数据库学习资料2安全mysql数据库
在当今数字化时代,随着互联网和大数据技术的发展,数据的价值愈发凸显。然而,随之而来的个人隐私泄露风险也日益增加,成为社会广泛关注的问题之一。特别是在医疗、金融等领域,如何既能充分利用海量数据资源推动行业发展,又能有效保护用户隐私不被侵犯,成为了亟待解决的重要课题。本文将深入探讨一种创新的数据安全共享方案——基于差分隐私(DifferentialPrivacy,DP)的MySQL数据库实现方法,旨在
- 12.udp
就很对
udp网络协议网络
12.udp**1.UDP特性****2.UDP编程框架(C/S模式)****3.UDP发送接收函数****4.UDP编程练习**1.UDP特性连接特性:无链接,通信前无需像TCP那样建立连接。可靠性:不可靠,不保证数据按序到达、不保证数据无丢失或重复。数据传输:适合传输大数据,但实际传输受网络MTU等因素限制。2.UDP编程框架(C/S模式)服务器端流程:创建套接字:调用socket()函数,参
- 【大数据入门核心技术-Hive】(十一)HiveSQL数据分区
forest_long
大数据技术入门到21天通关大数据hivehadoop数据仓库hdfs
目录一、分区的概念二、创建分区1)静态分区1、单分区测试2、多分区测试2)动态分区3、动态分区和静态分区混合使用三、分区的其它操作1、恢复分区2、归档分区3、交换分区四、分区数据查询1、单分区数据查询2、多分区数据查询方法1:通过union方法2:通过or一、分区的概念数据分区的概念以及存在很久了,通常使用分区来水平分散压力,将数据从物理上移到和使用最频繁的用户更近的地方,以及实现其目的。hive
- 毕设开源 python大数据旅游数据分析可视化系统(源码分享)
bee_dc
毕业设计毕设大数据
文章目录0前言1课题背景2数据处理3数据可视化工具3.1django框架介绍3.2ECharts4Django使用echarts进行可视化展示(mysql数据库)4.1修改setting.py连接mysql数据库4.2导入数据4.3使用echarts可视化展示5实现效果5.1前端展示5.2后端展示6最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到
- 大数据“超能力”:数据安全和隐私该如何保障?
大数据在线
云静思园大数据数据安全数据隐私英特尔
一人人都喜欢超级英雄。不论是超人还是钢铁侠,又或者是小蜘蛛和绿巨人,几乎每一个超级英雄漫画及电影的粉丝,都曾为其不公遭遇打抱不平:“他们明明是在用超能力做好事,拯救人类的,为什么电影里的政府和平民会这么蠢,总对他们缺乏信任,满是提防。”这就是所谓的“叶公好龙”了,因为当你身边真出现了个能把卡车当皮球一样抛来抛去的人时,你的反应恐怕也好不到哪儿去,可能也巴不得有政府出面,逼他接受《超级英雄注册法案》
- Python爬虫基础知识:从零开始的抓取艺术
egzosn
python爬虫开发语言
在大数据时代,网络数据成为宝贵的资源,而Python爬虫则是获取这些数据的重要工具。本文旨在为初学者提供一份Python爬虫的入门指南,涵盖基础知识、常用库介绍、实战案例以及注意事项,帮助你快速上手,成为一名合格的“网络矿工”。一、Python爬虫概述1.1什么是爬虫?爬虫,也称为网络爬虫或蜘蛛,是一种自动抓取互联网信息的程序。它通过模拟人类浏览网页的行为,自动地遍历和抓取网络上的数据,常用于数据
- 探索Oracle数据库的多租户特性:架构、优势与实践
2401_85812026
数据库oracle架构
在云计算和大数据时代,多租户架构成为数据库设计中的一个重要趋势。Oracle数据库的多租户选项(Multitenant)允许单个数据库实例支持多个独立数据库(称为容器数据库和可插拔数据库),每个数据库都有自己的数据、配置和资源。这种设计提高了资源利用率、简化了数据库管理,并增强了安全性。本文将深入探讨Oracle多租户选项的架构、优势以及如何在实际环境中部署和使用。1.多租户选项概述Oracle多
- 「大数据」Kappa架构
吴维炜
AIGC架构设计师大数据架构kappaAIGC
Kappa架构是一种处理大数据的架构,它作为Lambda架构的替代方案出现。Kappa架构的核心思想是简化数据处理流程,通过使用单一的流处理层来同时处理实时和批量数据,从而避免了Lambda架构中需要维护两套系统(批处理层和速度层)的复杂性。核心功能:单一处理层:Kappa架构使用单一的流处理层来处理所有数据,无论是实时数据还是批量数据。数据重放:通过重放历史数据,Kappa架构能够重新计算出与批
- 新零售社交电商系统小程序功能开发详细解析
v.15889726201
零售小程序
现在的购物方式是越来越有趣了,新零售社交电商系统是互联网、大数据、人工智能的技术和咱们熟悉的传统零售深度结合后产生的。它整合线上线下渠道及数据,带来全方位、多渠道、个性化购物体验。借助实时库存管理、智能推荐和无缝购物体验等功能,打破传统电商与实体店界限,其具备以下显著特点:一、系统主要功能分销管理独家推广代码机制:在这个新零售社交电商系统里,每个经销商都有一个只属于自己的推广代码。把这个代码分享给
- Spark性能调优
大数据侠客
spark相关问题汇总及解决spark性能调优
1、前言在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark。大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更
- Python学习-九大数据类型整合,详细讲解
小伙儿.
Pythonpython开发语言学习
目录1.int(整型)2.float(浮点型)3.Bool(布尔类型)4.Str(字符串类型)5.None(空值)6.List(列表)7.Tuple(元组)8.Dict(字典)9.Set(集合)(字典,列表,元组,字符串知识点可能不全,可以参考本人之前发的博客进行学习,加油。)1.int(整型)特点和用途:1.可以表示正整数、负整数和零,没有小数部分。2.取值范围取决于您所使用的Python版本和
- [碎碎念] 重启学习与博客之旅-我的每日计划
言午coding
碎碎念碎碎念
好久没在写博客了,今天我下定决心,要重新开始。我给自己定了个小目标,从今天起,每天都要写一篇博客,然后发布到CSDN和掘金上。以下是我的计划。一、每天学点新东西以后每天早上,我都得抽出至少一个小时专门用来学新技术。我打算先列个学习清单,把一直想学但没时间学的技术都写上去,然后按照自己的兴趣和工作需要,一项一项地去攻克。比如说,我最近对人工智能和大数据分析特别感兴趣,所以打算每天看点相关的专业书,或
- Java 性能优化与新特性
来恩1003
Java从入门到精通java
Java学习资料Java学习资料Java学习资料一、引言Java作为一门广泛应用于企业级开发、移动应用、大数据等多个领域的编程语言,其性能和特性一直是开发者关注的重点。随着软件系统的规模和复杂度不断增加,对Java程序性能的要求也越来越高。同时,Java语言也在不断发展,每个版本都引入了许多新特性,这些新特性不仅提高了开发效率,还改善了代码的可读性和可维护性。本文将分别介绍Java性能优化的方法和
- pandas读取大数据量的Excel文件
兮知
python基础数据分析pandasexcel数据分析
使用pandas快速读取百万行Excel数据的一种方法是使用pandas中的read_excel函数。可以使用以下代码读取Excel文件:importpandasaspddf=pd.read_excel('file_name')这个适合少量数据,如果一旦数据几十万或者上百万,那么程序就很慢有几种优化方法只读取需要的列:使用read_excel函数的usecols参数来指定需要读取的列。这可以减少读
- 林子雨《大数据技术原理与应用》第五讲——NoSQL数据库
天才代号23
大数据数据库hadoopnosql大数据
林子雨《大数据技术原理与应用》第五讲——NoSQL数据库林子雨《大数据技术原理与应用》第五讲笔记NoSQL数据库特点灵活的可扩展性灵活的数据模型和云计算结合查询性能差未形成通用的行业标准维护更加复杂NoSQL数据库有四大类型键值数据库:redis列族数据库:HBase、Cassandra文档数据库:MongoDB图数据库:Neo4j键值数据库数据模型:键是一个字符串对象,值可以是任意类型的对象典型
- OLAP引擎比较
小手追梦
hadooprpcjava
一,sparksql与dorisspark虽然是一个计算引擎,但sparksql也支持符合通用语法的sql查询,延迟为分钟级。doris是一个OLAP数据库,支持对大数据的复杂查询,延迟为秒级。doris比sparksql快,主要原因在于针对场景不同导致的架构不同。sparksql启动一个查询,需要进行资源调度、任务调度、任务分发,耗时更久。doris是常驻进程,启动一个doris查询后,快速的对
- 大数据组件ClickHouse介绍(场景、优劣势、性能)
坚持是一种态度
大数据开发ClickHouse大数据clickhouse数据库列式数据库
大数据组件ClickHouse介绍简介使用场景优势与劣势优势劣势性能单个查询吞吐量处理短查询的延时时间处理大量短查询数据写入性能查询性能简介clickhouse是一个高性能的列式存储分析数据库管理系统,由俄罗斯搜索引擎公司yandex开发。clickhouse具有以下特点高性能:clickhouse优化了查询和数据压缩算法,支持多维度数据分析和快速聚合查询。分布式:clickhouse采用共享无状
- DB2-Db2StreamingChangeEventSource
DataLu
DB2-debezium数据库数据库开发大数据开源
提示:Db2StreamingChangeEventSource类主要用于从IBMDb2数据库中读取变更数据捕获(CDC,ChangeDataCapture)信息。CDC是一种技术,允许系统跟踪数据库表中数据的更改,这些更改可以是插入、更新或删除操作。在大数据和实时数据处理场景中,CDC可以用来同步数据到其他系统,比如数据仓库、数据湖或者流处理平台如ApacheKafka。文章目录前言一、核心功能
- MySQL实战教程:从小白到大神的进阶之路!
奔跑吧邓邓子
项目实战mysql数据库
目录一、MySQL概述1、MySQL简介1.1MySQL的历史背景1.2MySQL的特点1.3MySQL的应用场景1.4MySQL的版本2、MySQL发展历程2.1MySQL的起源2.2MySQL的早期发展2.3MySQL的成熟与普及2.4MySQL的商业化与收购2.5MySQL的持续创新3、MySQL应用场景3.1Web应用程序3.2企业级应用3.3大数据分析3.4移动应用3.5云计算3.6物联
- 【详细讲解】hive优化
songqq27
大数据hive
1、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少