- DeepSeek预测2030年:全球 50% 的白领工作将由 AI Agent 辅助完成,金融、医疗等专业渗透率超 70%
未来AI编程
DeepSeek入门到精通人工智能金融
基于当前技术趋势、行业动态及搜索结果中的关键信息,对未来的发展进行多维度预测,涵盖人工智能、搜索行业、全球经济格局等领域:一、人工智能技术的革命性突破低成本高性能模型的普及DeepSeek-R1等国产大模型通过混合专家架构(MoE)和算法优化,以OpenAI1/70的训练成本实现同等性能,推动AI开发从“重训练”向“重推理”转型。这一模式将加速中小企业和新兴国家进入AI赛道,形成“算力平权”效应。
- 高压输电线故障检测数据集 YOLO 格式
幽络源小助理
幽络源资料分享人工智能机器学习深度学习
数据集介绍高压输电线故障检测数据集是一个专为电力行业AI模型训练设计的高质量数据集,支持YOLO格式的方框标注,适用于目标检测任务。数据集特点图像数量:1912张高质量图像,涵盖多种场景和光照条件。标注类别:6个类别,包括正常高压线、故障高压线、正常绝缘子、故障绝缘子等。格式支持:支持YOLOv5、YOLOv8等多种YOLO格式,方便直接用于模型训练。数据划分:训练集(1794张)、验证集(77张
- YOLOv10(训练完全版更新)
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
YOLOv10目前还不支持项目上的硬件板使用,等待后续。requirements.txt中已更新(torch版本更新了,提高了些精度)(我新加入了其他库)torch==2.0.1torchvision==0.15.2onnx==1.14.0onnxruntime==1.15.1pycocotools==2.0.7PyYAML==6.0.1scipy==1.13.0onnxsim==0.4.36on
- Golang从入门到精通
Wxhzy930120
课程概述Golang从入门到精通,本课程以学习Golang语言开发互联网产品为目标,从基础理论知识入手,详实地讲解Golang语言的开发方法与技巧,并通过大量的线上训练,带领同学们全面掌握服务端高并发、过载保护、水平扩展、服务降级、服务限流以及微服务等主流互联网产品的开发技术栈,快速达到大公司工作两年的技术水平。章节1:Golang环境搭建课时1课程介绍10:08课时2Go的发展历史02:08课时
- 为什么DeepSeek必须开源(以及它为何不会打败OpenAI)
新加坡内哥谈技术
人工智能深度学习机器人科技语言模型
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/如今,DeepSeek的名字已经传遍整个科技圈。这家中国AI实验室训练出了R1——一款开
- 免费 MLOps 课程:学习机器学习运维的完整流程
真智AI
学习机器学习运维免费教程
掌握MLOps:训练和跟踪实验、构建ML流水线、模型部署、生产环境监控,并从DevOps采用最佳实践。免费MLOps课程概览(DataTalks.Club提供)课程平台:DataTalks.Club适合人群:有一定Python和ML经验的开发者重点内容:模型训练、实验跟踪、流水线构建、模型部署、监控和DevOps最佳实践目录什么是MLOps?为什么需要MLOps?MLOpsZoomcamp课程介绍
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 项目上传github步骤
虾饺爱下棋
githubgiteegit
上传到GitHub的步骤大致是这样的:1.添加文件到暂存区首先,你需要将你修改的文件添加到Git的暂存区。使用gitadd.可以将当前目录下的所有文件(包括新增文件和修改过的文件)添加到暂存区:gitadd.2.提交文件到本地仓库接下来,使用gitcommit提交你的更改。你可以为提交写一个简短的说明,描述此次提交的内容。例如:gitcommit-m"添加了新的训练模型"3.推送更改到远程仓库然后
- 【AI-38】为什么开源的是预训练好的模型权重,而不是预训练模型呢?
W Y
人工智能DeepSeek
开源预训练好的模型权重而不是整个预训练模型,主要有以下几方面原因:知识产权与商业考量保护核心技术与数据:模型开发者可能希望保护模型的某些核心技术细节、独特算法或私有数据,这些是模型的关键竞争力所在。只开源权重可以让开发者在分享部分成果的同时,保留对核心部分的控制权,避免技术泄露。例如,一些企业在研发大模型时,使用了独特的数据清洗和标注方法,或者在模型架构上有创新的设计,他们可能不想公开这些细节,以
- 用人类反馈微调大模型,InstructGPT 让 GPT-3 脱胎换骨
人工智能
用人类反馈微调大模型,InstructGPT让GPT-3脱胎换骨本文展示了一种通过利用人类反馈进行微调,使大语言模型在广泛任务中契合用户意图的方法。我们从一组标注员编写的提示以及通过OpenAIAPI提交的提示开始,收集了一个数据集,其中包含标注员展示的期望模型行为,利用这些数据通过监督学习对GPT-3进行微调。接着,我们收集模型输出的排名数据集,使用人类反馈强化学习对这个经过监督学习训练的模型进
- 探索Omniglot:一个无尽的手写字符集合
宋溪普Gale
探索Omniglot:一个无尽的手写字符集合omniglotomniglot-一个包含大量不同语言手写字符图像的数据集,用于机器学习模型的训练和评估。项目地址:https://gitcode.com/gh_mirrors/om/omniglot项目简介Omniglot是由BrendenLake等人创建的一个开源项目,其目标是提供一个广泛的手写字符集,用于研究人类和机器的学习能力。这个项目不仅仅是一
- cap4:YoloV5的TensorRT部署指南(python版)
我是一个对称矩阵
TensorRT全流程部署指南YOLOpython人工智能TensorRT模型部署
《TensorRT全流程部署指南》专栏文章目录:《TensorRT全流程部署指南》专栏主页cap1:TensorRT介绍及CUDA环境安装cap2:1000分类的ResNet的TensorRT部署指南(python版)cap3:自定义数据集训练ResNet的TensorRT部署指南(python版)cap4:YoloV5目标检测任务的TensorRT部署指南(python版)cap5:YoloV5
- 基于Python开发的使用多个单视图特征融合的基于图卷积网络(GCN)的肺结节检测系统的示例
go5463158465
python深度学习算法python迁移学习开发语言
以下是一个基于Python开发的使用多个单视图特征融合的基于图卷积网络(GCN)的肺结节检测系统的示例。我们将使用PyTorch和torch_geometric库来实现图卷积网络,并模拟数据进行演示。步骤概述数据准备:模拟生成多个单视图的肺结节特征数据,并构建图数据。特征融合:将多个单视图特征进行融合。图卷积网络构建:构建一个简单的图卷积网络模型。模型训练:使用训练数据对模型进行训练。模型评估:使
- 基于YOLOv5、FaceNet与KNN的人脸识别系统
reset2021
人脸识别系统YOLOfacenetknn人脸检测
步骤1:环境配置安装依赖库:安装Python3.x安装TensorFlow、Keras、OpenCV等深度学习库获取数据集:收集训练用的多个人脸图像(每个用户至少几十张)将图像按用户分类存放在data/train/user1,user2等文件夹中步骤2:训练YOLO模型配置YOLO数据集:创建一个data.yaml文件,配置您的数据集路径和标签train:./data/train/images/v
- 软考高项备考技巧
chengxuyuan1213_
职场和发展
软考高项备考是一个系统而复杂的过程,以下是一些有效的备考技巧:一、制定备考计划明确时间节点:掌握报名时间、考试时间、成绩查询时间和证书领取时间等关键信息,以便合理安排备考进度。例如,软考高项通常在上半年进行,报名时间一般在考前几个月,考试时间则固定在5月底左右。分阶段备考:将备考过程分为不同的阶段,如基础学习阶段、强化训练阶段和冲刺复习阶段。每个阶段都有明确的学习目标和任务,确保备考过程有条不紊。
- Meta官宣Llama3:迄今为止最强大的开源大模型
人工智能开源
4月18日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。此版本具有经过预训练和指令微调的语言模型,具有8B(80亿)和70B(700亿)参数,可以支持广泛的用例。Llama3在各种行业基准上展示了最先进的性能,并提供了新功能,包括改进的推理能力。领先的性能新的8B和70B参数Llama3模型是Llama2模型的重大飞跃,为这些规模的LLM模型确立了新的先进水平。得
- 第G9周:ACGAN理论与实战
OreoCC
GAN
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660论文地址:ConditionalImageSynthe
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- DeepSeek 和 Qwen 模型快速部署指南
moton2017
深度学习运维模型部署DeepSeekQwen大型语言模型LLM人工智能AI
导读:DeepSeek-V3&DeepSeek-R1模型对比特性DeepSeek-V3DeepSeek-R1模型大小总参数量6710亿(671B),MoE架构,每个token激活370亿参数总参数量与V3相当,基于DeepSeek-V3-Base,采用类似的MoE架构训练方法包含预训练、监督微调(SFT)和强化学习(RL),使用14.8兆高品质文本进行预训练引入多阶段训练流程,冷启动微调后进行推理
- P3405 [USACO16DEC] Cities and States S题解
互联网的猫
集合应用算法c++
题目FarmerJohn有若干头奶牛。为了训练奶牛们的智力,FarmerJohn在谷仓的墙上放了一张美国地图。地图上表明了每个城市及其所在州的代码(前两位大写字母)。由于奶牛在谷仓里花了很多时间看这张地图,他们开始注意到一些奇怪的关系。例如,FLINT的前两个字母就是MIAMI所在的FL州,MIAMI的前两个字母则是FLINT所在的MI州。确切地说,对于两个城市,它们的前两个字母互为对方所在州的名
- DeepSeek混合精度训练核心技术解析与实践指南
燃灯工作室
Deepseek数据挖掘语音识别计算机视觉目标检测机器学习人工智能
1.主题背景1.1Why混合精度训练(价值)混合精度训练通过结合FP16和FP32数据格式,在保证模型精度的前提下实现:40-60%显存占用降低(ResNet50案例:从7.8GB降至4.2GB)1.5-3倍训练速度提升(BERT-Large案例:从8h缩短至5h)突破大模型训练显存瓶颈(GPT-3训练显存需求从3TB降至1.8TB)1.2行业定位属于深度学习基础设施层的训练优化技术,处于模型开发
- Qwen2.5-Coder Technical Report
UnknownBody
LLMDailyLLMforcodeTechnicalReport语言模型人工智能自然语言处理
本文是LLM系列文章,针对《Qwen2.5-CoderTechnicalReport》的翻译。Qwen2.5-Coder技术报告摘要1引言2模型架构3预训练3.1预训练数据3.1.1数据组成3.1.2数据混合3.2训练策略3.2.1文件级预训练3.2.2仓库级预训练4后训练4.1指令数据的配方4.2训练策略5去污6在基础模型上的评估6.1代码生成6.2代码补全6.3代码推理6.4数学推理6.5通用
- 什么是Grok-3?技术特点,场景,潜在问题与挑战
AndrewHZ
深度学习新浪潮深度学习transformer人工智能语言模型LLMGrok-3ElonMusk
Grok-3的技术特点与优势1.超大算力与训练规模算力投入:Grok-3使用了20万块英伟达H100GPU,分两个阶段训练(第一阶段10万GPU训练144天,第二阶段20万GPU训练92天),总计算量是前代Grok-2的10倍。这种规模远超同期其他项目(如印度的1.8万GPU公共设施),显著提升了模型性能。模型规模:推测其参数量可能达到200B-500B,远超DeepSeek-R1等模型,通过推大
- ChatGLM-6B中英双语对话大模型Windows本地部署实战
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型ChatGLMChatGLM-6B中英双语对话语言模型LLM大模型GPT聊天机器人
目录智谱清言ChatGLM简介ChatGLM下载硬件需求Conda环境下载代码下载模型部署测试网页版Demo命令行DemoAPI方式部署低成本部署智谱清言智谱清言是北京智谱华章科技有限公司研发的大模型。智谱AI致力于打造新一代认知智能大模型,专注于做大模型的中国创新。公司于2020年底研发GLM预训练架构,2021年训练完成百亿参数模型GLM-10B,利用MoE架构成功训练出收敛的万亿稀疏模型,2
- 模型算力需求估算
由数入道
人工智能
计算模型的算力需求,通常基于模型的参数量(BillionParameters,简称B)和训练/推理的计算任务复杂度,结合硬件计算能力(例如每秒浮点运算次数,FLOPS)来估算。以下是详细的方法和公式说明,以及实际的计算示例。1.算力需求的基本公式1.1训练阶段训练阶段的算力需求可以通过以下公式估算:训练算力需求(FLOPs)=2×P×N×S×D\text{训练算力需求(FLOPs)}=2\time
- 蓝桥杯训练题(1)
wuhu_king
算法算法
幂ab的末3位数是多少?输入两个正整数a,b。1≤a≤100,1≤b≤10000。输出从高位到低位输出幂的末三位数字,中间无分隔符。若幂本身不足三位,在前面补零。样例输入72011样例输出743答案#includeintmain(){inta,b;intret=1;scanf("%d%d",&a,&b);inti;for(i=0;i
- 蓝桥杯真题训练
怀化第一深情
编程题集蓝桥杯蓝桥杯c++算法
目录1.2.3.4.5.1..题目描述在电子计算机普及以前,人们经常用一个粗略的方法来验算四则运算是否正确。比如:248*15=3720把乘数和被乘数分别逐位求和,如果是多位数再逐位求和,直到是1位数,得2+4+8=14==>1+4=5;1+5=65*6而结果逐位求和为35*6的结果逐位求和与3符合,说明正确的可能性很大!!(不能排除错误)请你写一个计算机程序,对给定的字符串逐位求和:输入输入为一
- 蓝桥杯训练题No.6
GC_Lion
蓝桥杯蓝桥杯c++
#includeusingnamespacestd;signedmain()//正在研究signed{intn;cin>>n;cout.fill('0');//不足位数补0coutusingnamespacestd;typedeflonglongll;lla[100005];llw[105];intmain(){intn;cin>>n;for(lli=0;i>w[i];a[0]=1;memset(
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/