springboot 整合 redis布隆过滤器

一、什么是布隆过滤器

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。
它是一个判断元素是否存在集合的快速的概率算法。Bloom Filter有可能会出现错误判断,但不会漏掉判断。也就是Bloom Filter判断元素不在集合,那肯定不在。如果判断元素存在集合中,有一定的概率判断错误。根本原因还是因为hash函数的算法原理,两个不同的数据经过hash函数运算得到的结果可能是相同的。因此,Bloom Filter”不适合那些“零错误的应用场合。
而在能容忍低错误率的应用场合下,Bloom Filter比其他常见的算法(如hash,折半查找)极大节省了空间。

二、布隆的原理是什么

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

springboot 整合 redis布隆过滤器_第1张图片

 

三、Bloom Filter的缺点

bloom filter,牺牲了判断的准确率、删除的便利性 

存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。
删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。可以采用Counting Bloom Filter

四、代码

1、pom引包




  4.0.0

  com.zhouzy.redis
  zhouzyRedis
  0.0.1-SNAPSHOT

  zhouzyRedis
  
  http://www.example.com

  
		org.springframework.boot
		spring-boot-starter-parent
		2.0.5.RELEASE
	
    
	
        UTF-8
        UTF-8
        1.8
        Finchley.SR1
    

  
  	 
	
		org.springframework.boot
		spring-boot-starter-web
	
  	
      com.alibaba
      fastjson
      1.2.30
	
	
	
		commons-codec
		commons-codec
	
	
	
        
            org.springframework.boot
            spring-boot-starter-data-redis
        
        
        
            com.google.guava
            guava
            19.0
        
	
	
    
		org.springframework.boot
		spring-boot-starter-test
		test
	
  

 
		
			
				org.springframework.boot
				spring-boot-maven-plugin
			
		
	

2、application.yml配置文件

spring:
  redis:
    database: 3
    host: 127.0.0.1
    port: 6379
    jedis.pool.max-idle: 100
    jedis.pool.max-wait: -1ms
    jedis.pool.min-idle: 2
    timeout: 2000ms

3、配置类

RedisConfig

package com.zhouzy.redis.config;

import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.base.Charsets;
import com.google.common.hash.Funnel;
 
/**
 * @Author: JCccc
 * @CreateTime: 2018-09-11
 * @Description:
 */
 
@Configuration
@EnableCaching
public class RedisConfig {
    @Bean
    public CacheManager cacheManager(RedisConnectionFactory connectionFactory) {
 
        RedisCacheManager rcm=RedisCacheManager.create(connectionFactory);
 
        return rcm;
    }
    @Bean
    public RedisTemplate redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate redisTemplate = new RedisTemplate();
        redisTemplate.setConnectionFactory(factory);
 
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new
                Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        //序列化设置 ,这样计算是正常显示的数据,也能正常存储和获取
        redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
 
        return redisTemplate;
    }
    @Bean
    public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {
        StringRedisTemplate stringRedisTemplate = new StringRedisTemplate();
        stringRedisTemplate.setConnectionFactory(factory);
        return stringRedisTemplate;
    }
 
 
 
 
    //初始化布隆过滤器,放入到spring容器里面
    @Bean
    public BloomFilterHelper initBloomFilterHelper() {
        return new BloomFilterHelper<>((Funnel) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1000000, 0.01);
    }
 
 
 
}
 

BloomFilterHelper

package com.zhouzy.redis.config;

import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
 
public class BloomFilterHelper {
 
    private int numHashFunctions;
 
    private int bitSize;
 
    private Funnel funnel;
 
    public BloomFilterHelper(Funnel funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
 
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
 
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
 
        return offset;
    }
 
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }
 
    /**
     * 计算hash方法执行次数
     */
    private int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
}

RedisBloomFilter

package com.zhouzy.redis.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import com.google.common.base.Preconditions;
import com.zhouzy.redis.config.BloomFilterHelper;
 
/**
 * @Author : JCccc
 * @CreateTime : 2020/4/23
 * @Description :
 **/
@Service
public class RedisBloomFilter {
    @Autowired
    private RedisTemplate redisTemplate;
 
    /**
     * 根据给定的布隆过滤器添加值
     */
    public  void addByBloomFilter(BloomFilterHelper bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
           System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
 
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public  boolean includeByBloomFilter(BloomFilterHelper bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
 
        return true;
    }
 
}

4、控制层

package com.zhouzy.redis.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import com.google.common.base.Preconditions;
import com.zhouzy.redis.config.BloomFilterHelper;
 
/**
 * @Author : JCccc
 * @CreateTime : 2020/4/23
 * @Description :
 **/
@Service
public class RedisBloomFilter {
    @Autowired
    private RedisTemplate redisTemplate;
 
    /**
     * 根据给定的布隆过滤器添加值
     */
    public  void addByBloomFilter(BloomFilterHelper bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
           System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
 
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public  boolean includeByBloomFilter(BloomFilterHelper bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
 
        return true;
    }
 
}

启动类

package com.zhouzy.redis;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

/**
 * Hello world!
 *
 */
@SpringBootApplication
public class WebApplication {
    public static void main( String[] args ){
       SpringApplication.run(WebApplication.class, args);
    }
}

五、测试

添加:

springboot 整合 redis布隆过滤器_第2张图片

springboot 整合 redis布隆过滤器_第3张图片 校验:

springboot 整合 redis布隆过滤器_第4张图片

校验一个不存在的:

springboot 整合 redis布隆过滤器_第5张图片 

 

 

你可能感兴趣的:(java进阶-基础篇)