python的图像融合及图像的类型转换学习笔记

一、图像加法运算

1.Numpy库加法

其运算方法是:目标图像 = 图像1 + 图像2,运算结果进行取模运算。

  1. 当像素值<=255时,结果为“图像1+图像2”,例如:120+48=168
  2. 当像素值>255时,结果为对255取模的结果,例如:(255+64)%255=64

2.OpenCV加法运算

另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:

目标图像 = cv2.add(图像1, 图像2)

此时结果是饱和运算,即:

  1. 当像素值<=255时,结果为“图像1+图像2”,例如:120+48=168
  2. 当像素值>255时,结果为255,例如:(255+64) = 255

两种方法对应的代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('picture.bmp')
test = img

#方法一:Numpy加法运算
result1 = img + test

#方法二:OpenCV加法运算
result2 = cv2.add(img, test)

#显示图像
cv2.imshow("original", img)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,其中result1为第一种方法,result2为第二种方法,白色点255更多。

python的图像融合及图像的类型转换学习笔记_第1张图片

注意:参与运算的图像大小和类型必须一致。下面是对彩色图像进行加法运算的结果。

python的图像融合及图像的类型转换学习笔记_第2张图片


二、图像融合

图像融合通常是指将2张或2张以上的图像信息融合到1张图像上,融合的图像含有更多的信息,能够更方便人们观察或计算机处理。如下图所示,将两张不清晰的图像融合得到更清晰的图。

图像融合是在图像加法的基础上增加了系数和亮度调节量。

  1. 图像加法:目标图像 = 图像1 + 图像2
  2. 图像融合:目标图像 = 图像1 * 系数1 + 图像2 * 系数2 + 亮度调节量

主要调用的函数是addWeighted,方法如下:

dst = cv2.addWeighter(scr1, alpha, src2, beta, gamma)
dst = src1 * alpha + src2 * beta + gamma

其中参数gamma不能省略。

代码如下:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
src1 = cv2.imread('test22.jpg')
src2 = cv2.imread('picture.bmp')

#图像融合
result = cv2.addWeighted(src1, 1, src2, 1, 0)

#显示图像
cv2.imshow("src1", src1)
cv2.imshow("src2", src2)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

需要注意的是,两张融合的图像像素大小需要一致,如下图所示,将两张RGB且像素410*410的图像融合。

python的图像融合及图像的类型转换学习笔记_第3张图片

设置不同的比例的融合如下所示:

result = cv2.addWeighted(src1, 0.6, src2, 0.8, 10)

python的图像融合及图像的类型转换学习笔记_第4张图片


三.图像类型转换

图像类型转换是指将一种类型转换为另一种类型,比如彩色图像转换为灰度图像、BGR图像转为RGB图像。OPenCV提供了200多种不同类型之间的转换,其中最常用的包括3类,如下:

  • cv2.COLOR_BGR2GRAY
  • cv2.COLOR_BGR2RGB
  • cv2.COLOR_GRAY2BGR

代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
src = cv2.imread('01.bmp')

#图像类型转换
result = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

python的图像融合及图像的类型转换学习笔记_第5张图片

如果使用通道转化,则结果如下图所示:

result = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)

python的图像融合及图像的类型转换学习笔记_第6张图片

图像处理通常需要将彩色图像转换为灰度图像再进行后续的操作,更多知识后续将继续分享,希望对着喜欢,尤其是做图像识别、图像处理的同学。

希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。

你可能感兴趣的:(python,学习,笔记)