- Python编程入门指南:从基础到高级
编程咕咕gu-
python零基础学习开发语言学习零基础入门
如果你正在学习Python,那么你需要的话可以,点击这里Python重磅福利:入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享!一、引言1.1Python编程语言简介Python是一种高级编程语言,它具有简单易学、代码简洁、易维护等特点,因此被广泛应用于科学计算、数据分析、人工智能等领域。Python的语法简洁,代码易于阅读和编写,因此它被广大开发者所喜爱。同时,Python还拥有庞大
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- 2024年AIGC技术未来发展趋势与挑战:从应用创新到伦理监管
小宝哥Code
ChatGPT与AIGCAIGC
生成式人工智能(AIGC,ArtificialIntelligenceGeneratedContent)作为人工智能领域的一个重要分支,正在快速发展并改变着多个行业的格局。2024年,AIGC技术持续取得突破,并进入更多实际应用场景。本文将详细介绍AIGC的基本概念、原理、最新前沿技术及发展趋势。1.生成式人工智能(AIGC)基本概念与原理生成式人工智能(AIGC)是指通过人工智能技术,尤其是深度
- 为什么多模态大模型中使用Q-Former的工作变少了?附Q-Former结构简介
同屿Firmirin
多模态大模型深度学习人工智能面试
面试中遇到的问题,自己在实践中注意到了却没有深究原因,没有回答好,特此记录和探讨这个问题。多模态大模型中需要一个输入投影模块,将视觉特征投射到LLM能理解的语言特征维度,这里就可以选择各种不同的模块。LLaVA最初用了简单的线性投射,然而作者提到这么做是为了做实验更快一点,使用复杂的模块可能会有更好的效果。后来就有用MLP的,代表工作有LLaVA后续系列、Intern-VL。还有用Q-Former
- DeepSeek V3 模型微调(SFT)技术详解
zhangjiaofa
大模型DeepSeek模型微调
DeepSeekV3模型微调(SFT)技术详解目录引言背景知识2.1深度学习与预训练模型2.2微调(Fine-tuning)的概念2.3监督微调(SupervisedFine-tuning,SFT)DeepSeekV3模型概述3.1模型架构3.2预训练任务3.3模型性能监督微调(SFT)技术详解4.1数据准备4.1.1数据收集与清洗4.1.2数据标注4.1.3数据增强4.2模型初始化4.2.1预训
- AI 集群:Exo 项目详解
ivwdcwso
运维人工智能AIExo
引言随着人工智能技术的迅猛发展,越来越多的人希望在家中运行自己的AI集群。传统的AI集群通常需要昂贵的硬件和复杂的配置,但Exo项目正是为了解决这个问题而诞生的。Exo项目旨在让你利用日常电子设备,轻松搭建一个高效的AI集群。本文将详细介绍Exo项目的特点、安装步骤和实战示例。©ivwdcwso(ID:u012172506)Exo项目特点1.广泛的模型支持Exo支持多种流行的AI模型,包括但不限于
- DeepSeek 模型:架构创新与实际应用详解
汪子熙
人工智能架构语言模型人工智能
DeepSeek模型是近年来在自然语言处理(NLP)领域备受瞩目的开源大规模语言模型系列。其最新版本DeepSeek-V3采用了混合专家(Mixture-of-Experts,MoE)架构,拥有6710亿个参数,每个词元(token)激活370亿个参数。该模型在多项基准测试中表现出色,性能媲美GPT-4和Claude等领先的闭源模型。以下将详细介绍DeepSeek模型的架构、用途,并通过具体案例和
- python 监控键盘输入_python 监控键盘输入
weixin_39717121
python监控键盘输入
软件测试精品文章汇总测试基础python测试开发库及项目谷歌如何测试软件python工具书籍下载-持续更新2018软件测试标准汇总下载python测试开发自学每周一练python测试工具开发自学每周一练-2018-06软件测试工具书籍与面试题汇总下载(持续更新)python测试开发自动化测试数据分析...文章python人工智能命理2019-05-131907浏览量Shell历史记录异地留痕审计与
- 初学者指南:借助 LangChain 构建 LLM 驱动的应用程序!
初学者指南:借助LangChain构建LLM驱动的应用程序!原文链接:ABeginner’sGuidetoBuildingLLM-PoweredApplicationswithLangChain!作者:PavanBelagatti译者:倔强青铜三前言大家好,我是倔强青铜三。作为一名对技术充满热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新。欢迎关注我,微信公
- 【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
kakaZhui
llama深度学习人工智能AIGCchatgpt
在自然语言处理(NLP)领域,Transformer模型已经成为主流。然而,Transformer本身并不具备处理序列顺序的能力。为了让模型理解文本中词语的相对位置,我们需要引入位置编码(PositionalEncoding)。本文将深入探讨LLaMA模型中使用的RotaryEmbedding(旋转式嵌入)位置编码方法,并对比传统的Transformer位置编码方案,分析其设计与实现的优势。1.传
- Mooncake:面向大语言模型服务的以 KVCache 为中心的架构
步子哥
AGI通用人工智能语言模型架构人工智能
摘要Mooncake是Kimi的服务平台,Kimi是由MoonshotAI提供的领先的LLM服务。它采用以KVCache为中心的分解架构,将预填充和解码集群分离。它还利用GPU集群未充分利用的CPU、DRAM和SSD资源来实现KVCache的分解缓存。Mooncake的核心是其以KVCache为中心的调度器,它在满足延迟相关的服务水平目标(SLO)的同时,平衡了最大化整体有效吞吐量。与假设所有请求
- 进阶之路:从传统编程到AI大模型与Prompt驱动的爬虫技术
大模型老炮
人工智能prompt爬虫语言模型大模型学习AI大模型
前言爬虫相信很多人都对此有所了解,它主要依靠编写代码实现对网页结构的解析,通过模拟浏览器行为获取目标数据!随着人工智能技术的发展,LLM大模型的出现为爬虫技术带来了新的思路。与传统的编程模式不同,使用AI大模型+prompt可以显著提高程序员的编程效率。通过结合人工智能和自然语言处理技术,开发者可以更加高效地编写爬虫代码,并实现对网页内容的智能解析和提取。前置内容下面我将通过爬取豆瓣电影top25
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-LangGraph-链式处理(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型langchain
一、前言在当今人工智能快速发展的时代,大语言模型不断迭代升级,为各种复杂任务的处理提供了强大的支持。LangGraph作为一种创新的架构,其链式处理机制为充分发挥LLMs的潜力提供了新的途径。Qwen2.5模型是一款备受瞩目的大语言模型,它具备出色的语言理解和生成能力,在广泛的自然语言处理任务中都展现出了卓越的性能。其在语言的准确性、逻辑性以及对复杂语义的把握上都有着突出的表现,为基于它进行的各类
- 一文搞懂python的face_recognition人脸识别库
码上飞扬
python开发语言人脸识别
随着人工智能和机器学习的快速发展,人脸识别技术在安全监控、身份验证、智能相册等领域的应用越来越广泛。Python作为一门简洁高效的编程语言,其丰富的库支持使得人脸识别的实现变得更加容易。本文将介绍如何使用Python的face_recognition库来实现基本的人脸识别功能。一、face_recognition库简介1.1什么是face_recognition库?face_recognition
- AIGC常见基础概念
GISer_Jinger
人工智能AIGC机器学习ai
AIGC(AIGeneratedContent,人工智能生成内容)是近年来快速发展的领域,涉及文本生成、图像生成、音频生成、视频生成等。以下是AIGC常见的面试题目及其详解:1.AIGC基础概念什么是AIGC?它的主要应用场景有哪些?定义:AIGC是指利用人工智能技术自动生成内容,包括文本、图像、音频、视频等。应用场景:文本生成:新闻写作、广告文案、代码生成(如GitHubCopilot)。图像生
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- 9.1 LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计
少林码僧
AI大模型应用实战专栏langchaingpt人工智能chatgpt
LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计关键词:LangChain教程、大模型应用开发、AI开发框架、LangChain核心模块、智能体开发一、LangChain是什么?重新定义大模型应用开发范式LangChain是一个专为大语言模型(LLM)应用开发设计的开源框架,由HarrisonChase于2022年创建。它被开发者社区称为“AI应用开发的乐高积木”——通过标准
- Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
后端
JanusPro是DeepSeek开发的一个开源多模态人工智能框架,它通过集成视觉和语言处理能力,提供了高性能的多模态任务处理能力。在线体验:https://deepseek-januspro.com/背景JanusPro于2025年1月发布,是一个开源的多模态AI框架,能够同时处理视觉和语言信息。它采用了独特的多模态架构,包括解耦的视觉编码框架和统一的Transformer架构,以及SigLIP
- 《深度剖析Q-learning中的Q值:解锁智能决策的密码》
人工智能深度学习
在人工智能的飞速发展进程中,强化学习作为一个关键领域,为智能体与环境交互并学习最优行为策略提供了有效框架。其中,Q-learning算法凭借其独特的魅力,在机器人控制、自动驾驶、游戏AI等众多领域大放异彩。而Q-learning中的Q值,更是理解这一算法的核心关键,它如同智能体的“智慧密码”,指导着智能体在复杂环境中做出最优决策。Q值的直观定义:行为价值的“预言家”从直观层面理解,Q值代表着智能体
- 为什么提到各种本地化部署模型软件时总要提到 llama.cpp?
风雅GW
人工智能llama人工智能机器学习LLMai
为什么提到各种本地化部署模型软件时总要提到llama.cpp?llama.cpp是一个完整的开源项目,而不是单独的.cpp文件。尽管名字里有“cpp”,它实际上指的是基于C++开发的一整套工具,用于高效地在本地运行大语言模型(LLM)。1.核心角色:为本地化LLM部署提供高效底层支持llama.cpp是许多本地化LLM部署工具的基础,它不仅是一个单独的工具链,更是一个通用的解决方案,其核心角色体现
- Llama.cpp与Python的完美结合:快速入门指南
nseejrukjhad
llamapython开发语言
Llama.cpp与Python的完美结合:快速入门指南引言在现代AI的浪潮中,Llama.cpp提供了一种便捷的方法,将大型语言模型(LLM)集成到您的项目中。本文将介绍如何在Python中使用llama-cpp-python,并结合LangChain框架进行推理操作。通过本指南,您将逐步掌握如何安装、配置和使用Llama模型。主要内容Llama模型转换首先,新版本llama-cpp-pytho
- 创建自定义示例选择器以优化语言翻译模型
dsndnwfk
easyui前端javascriptpython
引言在构建自然语言处理模型时,一个常见的挑战是如何从大量示例中选择合适的子集来提高模型的性能和响应速度。本文将介绍如何使用自定义的示例选择器来优化语言翻译模型,特别是将英语翻译成意大利语的任务。我们将展示如何实现和使用一个基于输入长度差异选择示例的Selector。主要内容示例选择器接口在LangChain中,示例选择器负责编排用于提示的示例列表。所有选择器都基于BaseExampleSelect
- [如何在LangChain中实现安全集成:最佳实践与应对策略]
dsndnwfk
langchain安全数据库python
如何在LangChain中实现安全集成:最佳实践与应对策略在现代应用开发过程中,安全集成是一个非常重要的环节。LangChain作为一个拥有广泛生态系统的库,支持与各种外部资源进行集成,如本地和远程文件系统、API和数据库。这些集成使开发人员能够创建结合LLM(大语言模型)强大功能和外部资源交互的多样化应用。然而,安全问题不容忽视。本文将深入探讨在LangChain应用中实现安全集成的最佳实践,并
- 江大白 | 斯坦福大学教授李飞飞团队:关于 2024年人工智能发展报告总结!
双木的木
深度学习拓展阅读人工智能
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。原文链接:斯坦福大学教授李飞飞团队:关于2024年人工智能发展报告总结!导读斯坦福大学教授李飞飞团队总结、解析了2024年人工智能发展报告,涵盖AI研究进展、技术性能提升、经济影响及医疗教育突破,重点分析大型模型成本、多模态模型崛起、AI可靠性挑战和生成式AI影响,是了解AI现状与未来的必读内容!斯坦福大学教授李飞飞团队关于2024年人工
- Transformer--概念、作用、原理、优缺点以及简单的示例代码
Ambition_LAO
transformer深度学习
Transformer的概念Transformer是一种基于自注意力机制的神经网络模型,最早由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它主要用于自然语言处理任务,如机器翻译、文本生成、文本分类等。与传统的循环神经网络(RNN)和长短时记忆网络(LSTM)不同,Transformer完全摆脱了序列结构的依赖,可以并行处理数据,显著提高了训练效率和效果
- DeepSeek:通用人工智能的技术前沿与创新突破
热爱分享的博士僧
人工智能
一、DeepSeek的定位与背景DeepSeek(深度求索)是一家聚焦**通用人工智能(AGI)**研发的中国科技公司,成立于2023年,核心团队由全球顶尖AI科学家、工程师组成。公司以“探索智能本质,实现AGI造福人类”为使命,致力于突破大模型技术的边界,推动AI从专用向通用演进。其研发方向覆盖自然语言处理、多模态交互、强化学习等领域,并在模型架构、训练效率及实际应用场景中取得显著成果。二、核心
- Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习pytorch人工智能
前一篇文章,Tensor基本操作1|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started目录Tensor基本操作torch.max默认指定维度Tensor基本操作torch.maxtorch.max实现降维运算,基于指定的dim选取子元素的最大值。默认a=torch.randn(1,3)p
- 【图像超分】论文复现:万字长文!Pytorch实现EDSR!代码修改无报错!踩坑全记录!适合各种深度学习新手!帮助你少走弯路!附修改后的代码和PSNR最优的模型权重文件!
十小大
超分辨率重建(理论+实战科研+应用)深度学习pytorch人工智能超分辨率重建图像处理计算机视觉图像超分
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)修改后代码和权重文件下载见文末链接!!!包含制作好的h5数据集和最优性能权重文件,可直接用于测试。本文亮点:讲解细致,EDSR流程全通,代码注释丰富,适合新手入门阅读深度思考,踩坑报错全
- AiLab: 探索人工智能的前沿实验室
m0_75126181
人工智能
AiLab:引领人工智能创新的实验平台在人工智能快速发展的今天,如何让更多人了解并参与到AI技术的创新中来,成为一个重要的课题。AiLab(人工智能实验室)应运而生,作为一个面向全球开发者和组织的开放平台,AiLab致力于推动AI技术的普及与创新。AiLab的使命与愿景AiLab的核心使命是帮助开发者和组织快速上手AI技术,体验最新的AI创新成果。通过提供丰富的实验项目、教育资源和研究成果,AiL
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,