- 求两个字符串的最长公共子串(初学者适用)
打不倒的光头强和灰太狼
数据结构c语言
求两个字符串的最长公共子串(初学者适用)何为公共子串?即两个字符串中相等且连续的子串。例如:串“abcde”和串“gabfcde”中公共子串有ab”和“cde”两个。何为最长公共子串呢?即在上述“公共子串”的定义中加上最长二字,上面例子中“cde”便是最长公共子串。基本算法思想大致思路假设有串str1和串str2。挨个找出str1和str2中所有的公共子串,在寻找过程中只记录下长度最长的公共子串。
- C/C++ 已排序的链表中删除重复项算法详解及源码
猿来如此yyy
C/C++算法详解及源码算法c语言c++计算机视觉排序算法数据结构链表
已排序的链表中删除重复项的算法可以通过遍历链表的方式实现。具体步骤如下:初始化一个指针cur,指向链表的头节点。遍历链表,如果当前节点的值和下一个节点的值相同,则删除下一个节点,并将当前节点的next指针指向下一个节点的next指针,即将当前节点与下一个节点的重复项跳过。如果当前节点的值和下一个节点的值不同,则将指针cur指向下一个节点。优点:时间复杂度为O(n),其中n为链表的长度,算法只需要一
- 终于把前后端sm加解密以及加签验证调通了。
清风孤客
前端javascriptspringjavaspringboot
终于把前后端sm加解密以及加签验证调通了!领导要求我对项目的数据传输安全考虑下,因此就想到了对敏感字段做加密和对请求、响应做数字签名验证。网上看了很多文章,可能是因为我对加密这块不了解,感觉都比较乱。所以前前后后花了4天才把前后端调通。特地写一篇文章记录下流程。这里使用的是sm国密算法。不对的地方请读者评论指出。1.简单说明:前端使用sm-crypto库后端加密库使用bc库,架构上使用aop,注解
- C++ STL容器
He Des
c++开发语言
参考oiwikiSTL的产生是为了简化数据结构和算法的内部实现并对任一数据类型都可实现对应操作将功能封装起来,用时即拿类型序列式容器向量vector顺序表可当作动态数组使用数组arrayC++11特性定长顺序表(静态数组)双端队列deque两端均可对数据元素进行高效操作的队列列表list可沿双向遍历的链表(双向链表)单向列表(forward_list)只能单向遍历关系式容器集合set有序性互异性红
- 【算法应用】基于A*-蚁群算法求解无人机城市多任务点配送路径问题
小O的算法实验室
智能算法应用UAV路径规划多目标点路径规划算法多任务点路径规划无人机路径规划
目录1.A星算法原理2.蚁群算法原理3.结果展示4.代码获取1.A星算法原理A*算法是一种基于图搜索的智能启发式算法,它具有高稳定性和高节点搜索效率。主要原理为:以起点作为初始节点,将其加入开放列表。从开放列表中选择具有最小总代价值f(n)f(n)f(n)的节点作为当前节点,其中f(n)f(n)f(n)由实际路径代价g(n)g(n)g(n)和到目标点估计代价h(n)h(n)h(n)组成。检查当前节
- 【算法应用】基于麻雀搜索算法SSA求解车间布局优化问题
小O的算法实验室
智能算法智能算法应用车间布局优化智能算法应用车间布局优化智能算法
目录1.问题背景2.车间布局数学模型3.麻雀搜索算法SSA原理4.结果展示5.参考文献6.代码获取1.问题背景工厂设施布置的规划一直是工业工程领域不断研究和探索的内容,其中最具代表性之一的是系统布置设计(systemlayoutplanning,SLP)方法。作为一种经典且有效的方法,其为设施布置提供了很好的改善思路,但在长期的发展中也存在一些不可避免的缺点,如计算结果不够精确,很难确保计算结果较
- 【智能算法】哈里斯鹰算法(HHO)原理及实现
小O的算法实验室
智能算法算法智能算法
目录1.背景2.算法原理2.1算法思想2.2算法过程3.代码实现4.参考文献1.背景2019年,Heidari等人受到哈里斯鹰捕食行为启发,提出了哈里斯鹰算法(HarrisHawkOptimization,HHO)。2.算法原理2.1算法思想根据哈里斯鹰特性,HHO分为探索-过渡-开发三个阶段。2.2算法过程探索:哈里斯鹰以其强大的视力追踪和检测猎物,但有时猎物不易察觉。它们会在沙漠地区等待、观察
- Upgini: 智能数据搜索与丰富化引擎 - 提升机器学习和人工智能模型准确性的利器
2401_87189860
人工智能机器学习
Upgini:智能数据搜索与丰富化引擎在当今数据驱动的世界中,机器学习和人工智能模型的准确性至关重要。然而,提高模型准确性往往是一项艰巨的任务,需要大量的特征工程和数据处理工作。幸运的是,Upgini这一创新的Python库为数据科学家和机器学习工程师提供了一个强大的解决方案。Upgini的核心功能Upgini是一个智能数据搜索和丰富化引擎,专为机器学习和AI设计。它的主要功能包括:自动特征发现与
- 利用 Python 编程随机生成 n 个 1~9 之间的整数,然后统计生成的各个随机整数的个数。
hnjzsyjyj
Python程序设计Python列表
【题目描述】利用Python编程随机生成n个1~9之间的整数,然后统计生成的各个随机整数的个数。【算法分析】●输入的n必须≥10,这是因为代码中数组cnt[]的下标会到9。若n小于10,将不会有下标9,就会产生IndexError。●利用“桶排序”中“桶”的思想进行统计。【算法代码】fromrandomimport*n=eval(input("Enteranintegerwhich≥10:"))c
- 《机器学习实战》——在python中使用Matplotlib注解绘制树形图
哆啦AA梦
python机器学习python机器学习
#encoding=utf-8#使用文本注解绘制树形图importmatplotlib.pyplotaspltdecisionNode=dict(boxstyle="sawtooth",fc="0.8")leafNode=dict(boxstyle="round4",fc="0.8")arrow_args=dict(arrowstyle="<-")#上面三行代码定义文本框和箭头格式#定义决策树决策
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- 【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
Icomi_
807.《机器学习前置知识》机器学习人工智能计算机视觉深度学习神经网络c++c语言
目录编辑编辑1.Chapter2WhyLinearAlgebra?2.Chapter3WhatIsaVector?个人主页:Icomi大家好,我是Icomi,本专栏是我阅读外文原版书《BeforeMachineLearning》对于文章中我认为能够增进线性代数与机器学习之间的理解的内容的一个输出,希望能够帮助到各位更加深刻的理解线性代数与机器学习。若各位对本系列内容感兴趣,可以给我点个关注跟进内容
- 算法题解:数据流中的中位数
琴瑟和鸣1
算法学习数据流中的中位数算法剑指offer
题目描述如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。代码实现importjava.util.*;publicclassSolution{//按照题目中描述,是要所
- Python 实现车牌识别
菜狗小测试
Python技术专栏python计算机视觉opencv
一、车牌识别的基本原理车牌识别主要包括以下几个步骤:图像采集:通过摄像头或其他图像采集设备获取包含车牌的图像。图像预处理:对采集到的图像进行灰度化、滤波、增强等操作,以提高图像的质量和清晰度,便于后续的处理。车牌定位:从预处理后的图像中找出车牌的位置。这可以通过一些特征提取和机器学习算法来实现,例如基于颜色特征、边缘特征等方法来定位车牌区域。字符分割:将定位到的车牌区域中的字符分割开,以便对每个字
- 数学与机器学习:共舞于智能时代的双璧
每天五分钟玩转人工智能
机器学习人工智能
随着人工智能的崛起,机器学习作为其核心技术之一,正引领着新一轮的科技革命。而在这场革命中,数学以其深邃的理论和精妙的工具,为机器学习提供了坚实的支撑。数学与机器学习之间的关系,如同琴瑟和鸣,共同编织出智能时代的华美乐章。数学,作为自然科学的皇后,以其严谨的逻辑和精确的推理,为机器学习提供了坚实的理论基础。机器学习算法的设计、优化和应用,都离不开数学的支持。无论是线性代数、概率统计,还是微积分、最优
- RiskCloud-基于Markov算法精准的FTA、 JSA、FMEA软件
资讯过客视点
算法
这个美美的“花蝴蝶”是什么?样式规整、图案美化、脉络清晰、让人眼前一亮!由上海歌略软件科技有限公司自主研发打造,RiskCloud世界领先的企业级整体风险管理解决方案大作!“BowTie领结图”接下来,就让我们携手一起走进RiskCloud-BowTie领结图,一起领略她的风采吧!风险管理领结图介绍20世纪90年代末,领结图作为一种独特的安全管理工具,开始在国外石油化工领域得到较为广泛的应用。基于
- python实现dbscan
怎么就重名了
算法python开发语言
python实现dbscan原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。DBSCAN中的几个定义:Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;核心对象:如
- 02数组+字符串+滑动窗口+前缀和与差分+双指针(D5_双指针)
Java丨成神之路
06数据结构与算法java
目录一、基本介绍二、算法思想三、算法模型1.对撞指针2.快慢指针3.滑动窗口一、基本介绍双指针是一种应用很广泛且基础的算法,严格来说双指针不是算法更像是一种思想。双指针中的“指针”不仅仅是大家所熟知的C/C++里面的地址指针,还是索引、游标。二、算法思想双指针是指在遍历对象时,使用两个或多个指针进行遍历及相应的操作。大多用于数组操作,这利用了数组连序性的特点。双指针常用来降低算法的时间复杂度,因为
- Python实现图像(边缘)锐化:梯度锐化、Roberts 算子、Laplace算子、Sobel算子的详细方法
闲人编程
pythonpython计算机视觉人工智能SobelLaplaceRoberts锐化
目录Python实现图像(边缘)锐化:梯度锐化、Roberts算子、Laplace算子、Sobel算子的详细方法引言一、图像锐化的基本原理1.1什么是图像锐化?1.2边缘检测的基本概念二、常用的图像锐化算法2.1梯度锐化2.1.1实现步骤2.2Roberts算子2.2.1实现步骤2.3Laplace算子2.3.1实现步骤2.4Sobel算子2.4.1实现步骤三、Python实现图像锐化3.1导入必
- 从模型到实际:人工智能项目落地的关键要素
IT猫仔
科技人工智能语言模型自然语言处理搜索引擎服务器机器学习
引言近年来,人工智能技术从实验室走向实际应用,其潜力在各行各业得到了初步的验证。然而,AI技术的落地并非一蹴而就,许多企业在尝试部署AI项目时,却发现自己陷入了“模型很好看,应用却难做”的困境。无论是数据准备不足、算法与场景的不匹配,还是缺乏持续优化的机制,这些问题都可能导致项目停滞,甚至功亏一篑。前排提示,文末有大模型AGI-CSDN独家资料包哦!对于企业来说,人工智能的价值不仅在于模型的高精度
- [C#] 对24位图像进行水平翻转(FlipX)的跨平台SIMD硬件加速向量算法(使用YShuffleX3Kernel)
zyl910
VectorTraitsc#算法开发语言SIMD图像处理
文章目录一、标量算法1.1算法实现1.2基准测试代码二、向量算法2.1算法思路2.1.1难点说明2.1.2解决办法:每次处理3个向量2.1.3用YShuffleX3Kernel对3个向量内的24位像素进行翻转2.2算法实现2.3基准测试代码2.4使用YShuffleX3Kernel_Args来做进一步的优化三、基准测试结果3.1X86架构3.1.1X86架构上`.NET6.0`程序的测试结果3.1
- scikit-learn基本功能和示例代码
weixin_30777913
深度学习机器学习pythonscikit-learn
scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,提供了丰富的工具和算法,涵盖了数据预处理、模型训练、评估和优化等多个方面。scikit-learn是一个功能强大的机器学习库,涵盖了数据预处理、分类、回归、聚类、降维、模型选择与评估等多个方面。通过上述代码示例,您可以快速上手并使用scikit-learn进行机器学习任务。以下是对scikit-learn主要功能
- 强化学习很多ac架构的算法比如ppo,为什么使用状态价值网络而不使用动作价值网络实现critic呢?|状态价值网络的优势与挑战|Actor-Critic|状态价值|强化学习
concisedistinct
人工智能算法人工智能架构
目录1.强化学习的基础1.1策略与价值函数2.Actor-Critic架构概述2.1Critic的作用3.为什么选择状态价值网络?3.1训练稳定性3.2计算效率3.3高维动作空间的适应性4.使用状态价值网络的挑战4.1收敛速度4.2欠拟合风险5.解决方案与未来方向5.1改进的状态价值网络5.2结合动作价值和状态价值6.结论随着强化学习技术的不断发展,其在诸如游戏、机器人控制和金融预测等领域的应用越
- 强化学习中,为什么用AC架构
资源存储库
算法强化学习算法
目录强化学习中,为什么用AC架构为什么用AC架构?AC架构的工作原理AC架构的优缺点优点:缺点:相关算法:基于AC架构的算法总结强化学习中,为什么用AC架构在强化学习(ReinforcementLearning,RL)中,AC架构(即Actor-Critic架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。AC架构结合了策略梯度方法和价值迭代方法,通过分离策略和价值函数的估
- There was a problem confirming the ssl certificate: [SSL:CERTIFICATE_ VERIFY_ FAILED]certificate解决方案
爱编程的喵喵
Python基础课程pythonpipSSLcertificate解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Therewasaproblemco
- 【大模型应用开发 动手做AI Agent】LlamaIndex和基于RAG的AI开发
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【大模型应用开发动手做AIAgent】LlamaIndex和基于RAG的AI开发1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系LlamaIndexRAG联系3.核心算法原理&具体操作步骤3.1算法原理概述LlamaIndexRAG3.2算法步骤详解LlamaIndexRAG3.3算法优缺点LlamaIndexRAG3.4算法应用领域4.数学模型和公
- 2022年最新【Java八股文背诵版面试题】面试必备,查漏补缺;多线程+spring+JVM调优+分布式+redis+算法
Java面试_
Javajava面试jvm
前言春招,秋招,社招,我们Java程序员的面试之路,是挺难的,过了HR,还得被技术面,小刀在去各个厂面试的时候,经常是通宵睡不着觉,头发都脱了一大把,还好最终侥幸能够入职一个独角兽公司,安稳从事喜欢的工作至今...近期也算是抽取出大部分休息的时间,为大家准备了一份通往大厂面试的小捷径,准备了一整套Java复习面试的刷题以及答案,我知道很多同学不知道怎么复习,不知道学习过程中哪些才是重点,其实,你们
- RAG技术架构深度解析(非常详细)零基础入门到精通,收藏这一篇就够了
Python_chichi
程序员互联网大模型架构人工智能机器学习语音识别
本文主要介绍了RAG技术架构在AI编程中的创新应用及其面临的挑战。文章深入分析了RAG技术架构的兼容性、实时性和智能化水平等方面的问题,并提出了相应的改进措施,如加强标准化建设、引入实时数据处理技术和先进算法模型。同时,文章预测了RAG技术架构在智能化水平持续提升、跨领域融合加速以及数据隐私与安全保障方面的未来发展趋势。最后,文章回顾了RAG技术在AI编程领域的应用成果,并展望了其广阔的应用前景,
- 【第十天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-两种常见的字符串算法(持续更新)
Long_poem
算法python哈希算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Python数据结构与算法的详细介绍1.Python中的常用的字符串算法2.字符串算法3.详细的字符串算法1)KMP算法2)Rabin-Karp算法总结前言提示:这里可以添加本文要记录的大概内容:第一天Python数据结构与算法的详细介绍第二天五种常见的排序算法第三天两种常见的搜索算法第四天两种常见的递归算法第五天一种
- 算法设计与分析-----贪心法
拾亿-唯一
算法算法贪心算法c语言
算法设计与分析-----贪心法(c语言)一、贪心法1、定义2、贪心法具有的性质1、贪心选择性质2、最优子结构性质3、贪心法的算法框架5、求解活动安排问题6、求解最优装载问题二、贪心法实验1、实验一求解田忌赛马问题2、实验二求解多机调度问题3、实验三哈夫曼编码一、贪心法1、定义贪心法的基本思路是在对问题求解时总是做出在当前看来是最好的选择,也就是说贪心法不从整体最优上加以考虑,所做出的仅是在某种意义
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那