千万级延时任务队列如何实现,看美图开源的-LMSTFY

导读:Task是web开发中一个经典场景,我们时常需要延时任务,或者定时任务,通常都需要任务队列。常见的任务队列如celery,lmstfy是美图开源的任务队列。本文作者详细剖析了lmstfy的架构实现,干货满满,适合技术人员阅读。

lmstfy(Let Me Schedule Task For You) 是美图架构基础服务团队在 2018 年初基于 Redis 实现的简单任务队列(Task Queue)服务,目前在美图多个线上产品使用接近两年的时间。主要提供以下特性:

  • 任务具备延时、自动重试、优先级以及过期等功能

  • 通过 HTTP restful API 提供服务

  • 具备横向扩展能力

  • 丰富的业务和性能指标

Github 项目地址: https://github.com/meitu/lmstfy


使用场景

任务队列跟消息队列在使用场景上最大的区别是: 任务之间是没有顺序约束而消息要求顺序(FIFO),且可能会对任务的状态更新而消息一般只会消费不会更新。 类似 Kafka 利用消息 FIFO 和不需要更新(不需要对消息做索引)的特性来设计消息存储,将消息读写变成磁盘的顺序读写来实现比较好的性能。而任务队列需要能够任务状态进行更新则需要对每个消息进行索引,如果把两者放到一起实现则很难实现在功能和性能上兼得。在美图内部选型上,如果是异步消息模型一般会选择消息队列,比如类似日志上报,抢购等。而对于需要延时/定时下发或者修改状态任务则是使用任务队列。

比如在以下几种场景会使用任务队列:

  1. 定时任务,如每天早上 8 点开始推送消息,定期删除过期数据等

  2. 任务流,如自动创建 Redis 流程由资源创建,资源配置,DNS 修改等部分组成,使用任务队列可以简化整体的设计和重试流程

  3. 重试任务,典型场景如离线图片处理


目标与调研

在自研任务队列之前,我们基于以下几个要求作为约束调研了现有一些开源方案:

  • 任务支持延时/优先级任务和自动重试

  • 高可用,服务不能有单点以及保证数据不丢失

  • 可扩展,主要是容量和性能需要可扩展

第一种方案是 Redis 作者开源的分布式内存队列 disque(https://github.com/antirez/disque)。disque 采用和 Redis Cluster 类似无中心设计,所有节点都可以写入并复制到其他节点。不管是从功能上、设计还是可靠性都是比较好的选择。我们在 2017 年也引入 disque 在部分业务使用过一段时间,后面遇到 bug 在内部修复后想反馈到社区,发现 Redis 作者决定不再维护这个项目(要把 disque 功能作为 redis module 来维护,应该是会伴随 Redis 6 发布)。最终我们也放弃了 disque 方案,将数据迁移到我们自研任务队列服务。

第二种方案是 2007 年就开源的 beanstalkd(https://github.com/beanstalkd/beanstalkd),现在仍然还是在维护状态。beanstalkd 是类 memcached 协议全内存任务队列,断电或者重启时通过 WAL 文件来恢复数据。但 benstalkd 不支持复制功能,服务存在单点问题且数据可靠性也无法满足。当时也

你可能感兴趣的:(千万级延时任务队列如何实现,看美图开源的-LMSTFY)