- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- 2025年美赛数学建模 ICM 问题 F: 网络安全强大吗?
深度学习&目标检测实战项目
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025美赛F题网络安全强大吗思路代码F题
全部都是公开资料,不代写论文,请勿盲目订阅)2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpto1pro分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgptpro会员,会充分利用chatgpto1
- 2023年研究生数学建模竞赛优秀论文汇总
Xiaoxll12
数学建模
A题:WLAN网络信道接入机制建模B题:DFT类矩阵的整数分解逼近:解析与优化方法C题:大规模创新类竞赛评审方案研究D题:区域双碳目标与路径规划研究E题:出血性脑卒中临床智能诊疗模型的建立F题:强对流降水临近预报收集的历年研究生数学建模竞赛代码(部分)
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 第六届MathorCup高校数学建模挑战赛-A题:淡水养殖池塘水华发生及池水自净化研究
格图素书
大数据竞赛赛题解析数学建模
目录摘要1问题的重述2问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析2.5问题五的分析3.问题的假设4.符号说明5.模型的建立与求解5.1问题一的建模与求解5.1.1分析对象与指标的选取5.1.2折线图分析5.1.3相关性分析5.1.4问题1的结果分析5.2问题二的建模与求解5.2.1分析对象与指标的选取5.2.2Topsis算法评价5.2.3综合污染指数法5.
- Datawhale数学建模导论课程第八章学习心得(I)一时间序列与投资模型
星.惜尘
数学建模
学习链接:Datawhale数学建模教程Descriptionhttps://datawhalechina.github.io/intro-mathmodel/#/CH8/%E7%AC%AC8%E7%AB%A0-%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97?id=_811-%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%
- 数学建模与MATLAB实现:插值技术详解
青橘MATLAB学习
#数学建模Matlab编程实验数学建模matlab开发语言
引言插值是数学建模与数据分析中的核心技术,广泛应用于信号处理、图像重建、地理信息系统等领域。本文基于一维插值与二维插值的理论框架,结合MATLAB代码实战,系统讲解拉格朗日插值、分段线性插值、三次样条插值等方法,并通过温度预测、地貌分析等案例,帮助读者掌握插值技术的核心原理与实现技巧。一、插值基础理论1.一维插值定义:已知函数在有限点x0,x1,…,xnx_0,x_1,\dots,x_nx0,x1
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- 美国大学生数学建模竞赛COMAP2025-C题深度解读
@BreCaspian
数学建模数学建模
COMAP竞赛C题深度分析与创新解答一、问题重述与目标细化核心目标:预测2028年洛杉矶奥运会各国金牌及总奖牌数,并提供预测区间。识别可能首次获奖的国家,量化其概率。分析运动项目对奖牌的贡献度,提出国家优势项目优化策略。量化“教练效应”,推荐需引进教练的国家及项目组合。挑战:历史数据跨度长(1896–2024),需处理国家演变(如苏联解体)。教练数据稀疏,需设计间接指标衡量其影响。新兴项目(如滑板
- 美国大学生数学建模竞赛COMAP2025-A题深度解读
@BreCaspian
数学建模数学建模
COMAP2025A题全面深度解答:基于多尺度建模与智能分析的楼梯磨损研究一、问题背景与核心挑战题目要求:通过非破坏性测量方法,分析楼梯的磨损特征(如深度、形状、材料成分),推断以下信息:使用频率:每日或每年的使用次数。使用方向:单向或双向通行。同时使用人数:高峰时段的并行使用者数量。年龄与修复历史:楼梯的建造时间及是否经过修复。材料来源:验证材料是否与已知采石场或木材来源匹配。核心挑战:数据采集
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- python实现线性规划 数学建模 代替matlab
Leowner
python数学建模python数学建模
要解决的问题如图所示importnumpyasnpfromscipyimportoptimizez=np.array([2,3,1])a=np.array([
- 数学建模与MATLAB实现:无约束优化
青橘MATLAB学习
#数学建模Matlab编程实验数学建模matlab开发语言
无约束优化是数学建模中的一个重要问题,广泛应用于工程、经济、管理等领域。本文介绍了无约束优化的基本思想、常用算法,并重点讲解了如何使用MATLAB求解无约束优化问题。一、无约束优化问题无约束优化问题的标准形式为:minf(x)\minf(x)minf(x)其中,(x)是决策变量,(f(x))是目标函数。无约束优化的目标是找到使目标函数(f(x))最小的(x)值。二、无约束优化的基本算法1.最速下
- 数学建模与MATLAB实现:线性规划
青橘MATLAB学习
数学建模matlab开发语言
线性规划是数学建模中常用的一种优化方法,广泛应用于资源分配、生产计划、投资决策等领域。本文将介绍线性规划的基本概念,并重点讲解如何使用MATLAB求解线性规划问题,特别是对MATLAB中的linprog函数进行详细说明。一、线性规划的基本概念线性规划(LinearProgramming,LP)是数学规划中的一种,其目标函数和约束条件均为线性函数。线性规划问题的标准形式如下:minimizef(x)
- 多元线性回归模型:理论、应用与数学建模实例
小柒笔记
数学建模线性回归算法
引言多元线性回归模型是数学建模中的一种重要工具,它用于分析两个或两个以上自变量与一个因变量之间的关系。在许多实际问题中,如经济学、生物统计学、环境科学和社会科学等领域,多元线性回归模型都发挥着关键作用。本文将介绍多元线性回归模型的基本概念、数学表达式及其在数学建模中的应用。一、多元线性回归模型的基本概念1.1定义多元线性回归模型是指包含一个因变量和多个自变量的线性回归模型。数学上,它可以表示为:Y
- 基于联合概率密度与深度优化的反潜航空深弹命中概率模型研究摘要
終不似少年遊*
人工智能算法数学建模python
前言:项目题材来自数学建模2024年的D题,文章内容为笔者和队友原创,提供一个思路。摘要随着现代军事技术的发展,深水炸弹在特定场景下的反潜作战效能日益凸显,如何最大化的发挥深弹威力也成为重要研究课题。本文针对评估深弹投掷落点对命中潜艇概率的影响进行分析,综合利用Python、geogebra和draw.io等,以得出最大命中率、最优投掷方案和联合阵列编排的合理方案为目标建立了深度命中率模型,并使用
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 数模测评:doubao1.5>deepseek-v3>gpt-o1
您好啊数模君
gpt数学建模deepseekdoubao
本次测试了当前评价最高的三款大模型doubao1.5、gpt-o1、deepseek-v3(r1崩溃),都是采用无提示词的硬核提问方式,测试视频如下。gpto1、doubao1.5、deepseek测评测试方式:上传美赛六道题目文件直接提问以下5句话:这是一道数学建模题目,请做下问题重述请给出每一个问题的思路针对每个问题推荐前沿算法建立第一问数学模型编写第一问数学模型的程序
- JCR一区级 | Matlab实现蜣螂算法DBO-Transformer-LSTM多变量回归预测
Matlab机器学习之心
算法matlabtransformer
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:水质预测对于环境保护和资源管理至关重要。本文提出了一种基于蜣螂算法(DungBeetleOptimizer,DBO)、DBO-Transformer和LSTM的多变量水质回归预测模型,旨在提高水质参数
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 2025美赛数学建模F题:网络安全强大——思路+代码+模型
灿灿数模分号
web安全安全网络
详细思路更新见文末名片2025ICM问题F:网络安全强大?背景:我们世界的更多部分已经通过现代技术的奇迹互联起来。尽管这种在线连接性提高了全球生产力,并使世界变得更小,但它也增加了我们个人和集体在网络犯罪方面的脆弱性。网络犯罪之所以难以应对,原因有很多。许多网络安全事件跨越国界,使得调查和起诉这些犯罪时的管辖问题变得复杂。此外,许多机构,如投资公司,宁愿支付赎金而不报告被黑客攻击,避免让客户和潜在
- 2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码
灿灿数模分号
数学建模
2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码,详细更新见文末名片一、问题A:测试时间:楼梯的恒定磨损(ArchaeologicalModeling)适合专业:考古学、历史学、数学、机械工程难度:中等开放度:中等问题A让学生探索如何根据楼梯的磨损情况推断楼梯的使用情况。这个问题涉及到对磨损的定量分析,并通过历史记录推测使用模式。该题目适合对历史、考古以及机械磨损有兴趣的学生,尤
- 2025美赛美国大学生数学建模竞赛C题思路分析完整论文(45页)(含模型,可运行代码,运行结果)
小文数模
2025美国大学生数学建模竞赛2025美赛数学建模C数学建模pythonmatlab
2025美赛数学建模竞赛C题思路分析完整论文目录摘要一、问题重述二、问题分析三、模型假设四、模型建立与求解4.1问题14.1.1问题1思路分析4.1.2问题1模型建立4.1.3问题1样例代码(仅供参考)4.1.4问题1样例代码运行结果(仅供参考)4.2问题24.2.1问题2模型建立分析4.2.2问题2模型建立4.2.3问题2样例代码(仅供参考)4.2.4问题2样例代码运行结果(仅供参考)4.3问题
- 变分法实例详解:从最速降线到一般泛函的Mathematica验证
繁星不语有限元学习
数学建模算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档变分法实例详解:从最速降线到一般泛函的Mathematica验证一、最速降线问题:旋轮线的诞生1.问题背景2.数学建模3.Mathematica验证二、广义泛函极值问题:显式依赖变量的变分法1.问题描述2.数学推导3.Mathematica验证三、Mathematica工具包:`VariationalMethods`详解1.核心功能2
- 2025美赛数学建模c题思路+模型+代码分享!非机构不卖课(12:51已更新完善Q1模型的代码)
夜信431
机器学习人工智能数学建模大数据python
2025MCMC题思路分析中文版题目翻译在这里先不放了,重点说一下我和队友讨论出来的一个简单思路。题目背景信息排名、金牌、奖牌数量:奥运会奖牌榜的核心指标。奖牌预测方法:强调基于参赛运动员名单而非历史奖牌数据进行预测。数据限制:模型和分析必须仅使用提供的五个数据文件,所以好好想想到时候伟大教练应该怎么考虑(data_dictionary.csv,summerOly_athletes.csv,sum
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- 2025数学建模美赛C题【Models for Olympic Medal Tables】第一问
步入烟尘
2025数学建模美赛C题2025数学建模美赛数学建模奥运会历史奖牌
本文为个人解题笔记,仅供参考学习。本文C题的第一问。其他问题均在本专栏内,订阅一次,全部可见。文章目录问题1解题全流程解题完整过程:建立预测奥运会奖牌数的数学模型1.数据分析与清理1.1数据来源与结构1.2数据清理2.探索性数据分析(EDA)2.1国家奖牌分布趋势2.2奖牌与赛事数量的关系2.3主办国优势分析3.模型建立3.1奖牌数预测模型3.2奖牌首次获得预测模型3.3奖牌分布与赛事类型关联模型
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- 2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
youcans_
数学建模课数学建模Matlabpython
2025年数学建模美赛A题分析(1)TestingTime:TheConstantWearOnStairs2025年数学建模美赛A题分析(2)楼梯磨损分析模型2025年数学建模美赛A题分析(3)楼梯使用方向偏好模型2025年数学建模美赛A题分析(4)楼梯使用人数模型特别提示:本文针对2025年A题进行分析,每天不断更新,建议收藏。其它题目的分析详见【youcans的数学建模课】专栏。文章目录202
- 【2025美赛ABCDEF】2025年美国大学生数学建模竞赛思路、代码更新中.....
创新优化代码学习
数学建模
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️美赛及概况1找程序网站推荐2公式编辑器、流程图、论文排版325年美赛资源下载3.12025美赛A题——楼梯的持续磨损3.22025美赛B题——管理可持续旅游3.32025美赛C题——奥运会奖牌榜模型3.42025美赛D题——通往更好城市的路线图3.52025美赛E
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc