- 数据库和数据仓库区别
hhhecker
Hadoop学习数据仓库数据库hive
HIve与Mysql对比HiveMysql数据存储位置HDFS本地磁盘数据格式用户定义系统决定数据更新不支持(不支持修改和删除)支持(支持增删改查)索引有,但较弱,一般很少用有,经常使用的执行MapReduceExecutor执行延迟高低可扩展性高低数据规模大小数据库与数据仓库对比数据库:传统的关系型数据库主要应用在基本的事务处理,例如银行交易之类的场景数据库支持增删改查这些常见的操作。数据仓库:
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- 大数据技术关键技术组件
大数据技术是一组用于处理、分析和管理大规模数据集的复杂方法和技术。这些数据集的特点是容量大、增长速度快,且结构多样化,包括结构化、半结构化和非结构化数据。传统数据库管理和分析工具在处理此类数据时效率低下或无法胜任,因此需要专门的大数据技术栈来支持高效的数据处理和智能决策。大数据技术的关键组件通常包括:分布式存储系统:HadoopDistributedFileSystem(HDFS):一个高度可扩展
- 大数据领域HDFS的集群资源管理优化
大数据洞察
大数据与AI人工智能大数据AI应用大数据hdfshadoopai
大数据领域HDFS的集群资源管理优化关键词:HDFS;集群资源管理;存储优化;性能调优;副本策略;负载均衡;NameNode优化摘要:HDFS(Hadoop分布式文件系统)作为大数据领域的基石,承载着海量数据的存储与管理重任。随着数据规模爆炸式增长和业务复杂度提升,HDFS集群的资源管理面临着"存不下、跑不快、管不好"的三重挑战:存储资源浪费与不足并存、计算与存储资源匹配失衡、集群运维效率低下。本
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- 【Elasticsearch】dfsPhase
`dfsPhase`(即DFS阶段)是在每个数据节点本地执行的,而不是在协调节点执行的。在Elasticsearch的查询流程中,`dfsPhase`是为了在进行“评分”时更准确地计算全局的term频率(TF-IDF),它需要先在每个数据节点上执行一次本地的DFS操作,收集该节点上每个字段的term统计信息(如docFreq、totalTermFreq),然后将这些信息回传给协调节点。协调节点再合
- 【图论】CF——B. Chamber of Secrets (0-1BFS)
KyollBM
图论算法
链接:https://codeforces.com/problemset/problem/173/B题目:思路:初识01BFS什么是01BFS呢?通常的BFS为一步权值为1,而某些题需要的不是走到步数,而是某种操作数,如花费一个操作可以走k步,而不花费只能走1步,通常我们使用双端队列可插队的性质来进行代码的编写,具体的对于不花费,那么就插入到前面,而对于花费则插入到最后本题中操作为“四射”,所以按
- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- HDFS文件系统
HDFS文件系统是hadoop生态系统的核心,主要用于分布式文件存储,它具备高可用,流式读取,文件结构简单,跨平台的特点,它的集群采用的是主从结构,分为命名节点和数据节点,命名节点主要用于元数据管理(例如对目录,文件的创建,数据块与数据节点的关系维护管理)及数据节点管理(例如数据节点之间数据的复制,节点状态的维护,节点间数据的均衡),该文件系统最基本的存储单位是block即数据块,默认大小是64M
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 大数据集群运维常见的一些问题以及处理方式
态);若为YARN节点,重启NodeManager后手动将其加入集群。若为节点整体宕机:排查电源和网络,重启节点后,依次启动HDFS、YARN等服务进程,确认数据块完整性(避免因节点宕机导致副本不足)。2.网络问题现象:节点间通信超时(如HDFS心跳超时、YARN任务调度延迟)、数据传输卡顿。可能原因:交换机故障、网线松动、网络带宽过载、防火墙规则拦截。处理方式:用ping、traceroute检
- 【BFS/思维】P1825 [USACO11OPEN] Corn Maze S
guozhetao
主题库题解宽度优先算法图论c++javaspringpython
题意去年秋天,农夫约翰带着奶牛们参观了一个玉米迷宫。但这不是一个普通的玉米迷宫:它有几个重力驱动的传送滑梯,可以让奶牛瞬间从迷宫中的一个点传送到另一个点。滑梯是双向的:奶牛可以瞬间从滑梯的起点滑到终点,或者从终点滑到起点。如果奶牛踩到滑梯的任一端,她必须使用滑梯。玉米迷宫的外部完全由玉米包围,只有一个出口。迷宫可以用一个N×MN\timesMN×M(2≤N≤3002\leqN\leq3002≤N≤
- hadoop 集群问题处理
一切顺势而行
hadoop大数据分布式
1.1.JournalNode的作用在HDFSHA配置中,为了实现两个NameNode之间的状态同步和故障自动切换,Hadoop使用了一组JournalNode来管理共享的编辑日志。具体来说,JournalNode的主要职责包括:共享编辑日志:JournalNode节点组成了一个分布式系统,用于存储HDFS的编辑日志(EditLogs)。这两个日志文件记录了对HDFS所做的所有更改,如文件创建、删
- sqoop从mysql导数据到hdfs,出现java.lang.ClassNotFoundException: Class QueryResult not found
无级程序员
大数据sqoopmysqlhdfs
运行sqoop从postgresql/mysql导入数据到hdfs,结果出现如下错误:2025-07-1816:59:13,624INFOorm.CompilationManager:HADOOP_MAPRED_HOMEis/opt/datasophon/hadoop-3.3.3Note:/opt/sqoop/bin/QueryResult.javausesoroverridesadeprecat
- Metaverse 到底是什么?元宇宙是炒作,还是真正的科技大趋势?
猫哥淮左
西元2031年12月24号晚上七点半。阿强迫不及待的,戴上他新买的OculusQuest第七代VirtualReality头盔,今天是他最爱的偶像歌手的圣诞夜演唱会。他身体坐在客厅的小沙发上,但在头盔里的虚拟世界,他已经进入了演唱会的会场。“搞什么鬼,明明都虚拟演唱会了,为什么我不能直接坐在第一排!干嘛跟古代时一样还要分区划位!”他一边抱怨着,一边找到了自己的座位,是虚拟DFS体育馆最高层的绿区,
- hive的sql优化思路-明白底层运行逻辑
ycllycll
hivesqlhadoop
一、首先要明白底层map、shuffle、reduce的顺序之中服务器hdfs数据文件在内存与存储之中是怎么演变的,因为hive的性能瓶颈基本在内存,具体参考以下他人优秀文章:1.HiveSQL底层执行过程详细剖析2.HiveJOIN性能调优二是要明白hive对应的sql它底层的mapreduce的过程中sql字段的执行顺序,来理解map的key、value会填充什么值,才能深刻理解怎么一步一步的
- JAVA刷题记录: 专题十五 BFS解决FloodFill算法
用屁屁笑
宽度优先算法
733.图像渲染-力扣(LeetCode)classSolution{int[]dx={0,0,-1,1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];if(color==prev)returnimage;Queueq=newLinkedList
- 14.优化算法之BFS解决FloodFill算法1
muyierfly
算法题算法宽度优先深度优先
0.FloodFill简介dfs:深度优先遍历(红色)bfs:宽度优先遍历1.图像渲染算法原理classSolution{int[]dx={0,0,1,-1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];//统计刚开始的颜⾊if(prev==co
- BFS 解决 FloodFill 算法(C++)
lim 鹏哥
刷题算法宽度优先c++
文章目录前言一、概念二、岛屿数量1.题目链接2.算法原理3.代码编写三、被围绕的区域1.题目链接2.算法原理3.代码编写总结前言一、概念BFS就是广度优先遍历,也就是层序遍历。FloodFill是指在数组中找出性质相同的连通块,并根据题目进行操作。二、岛屿数量1.题目链接200.岛屿数量2.算法原理遍历整个矩阵,每找到一块陆地,记录一次。我们怎末知道我们是否已经遍历过这个地方了呢??方法1:如果遍
- BFS-FloodFill 算法 解决最短路问题 多源 解决拓扑排序
penguin_bark
#BFS算法宽度优先leetcode
文章目录一、FloodFill算法[733.图像渲染](https://leetcode.cn/problems/flood-fill/description/)2.思路3.代码[200.岛屿数量](https://leetcode.cn/problems/number-of-islands/description/)2.思路3.代码[LCR105.岛屿的最大面积](https://leetcod
- 六、深度剖析 Hadoop 分布式文件系统(HDFS)的数据存储机制与读写流程
深度剖析Hadoop分布式文件系统(HDFS)的数据存储机制与读写流程在当今大数据领域当中,Hadoop分布式文件系统(HDFS)作为极为关键的核心组件之一,为海量规模的数据的存储以及处理构筑起了坚实无比的根基。本文将会对HDFS的数据存储机制以及读写流程展开全面且深入的探究,通过将原理与实际的实例紧密结合的方式,助力广大读者更加全面地理解HDFS的工作原理以及其具体的应用场景。一、HDFS概述H
- 大数据处理技术:分布式文件系统HDFS
茜茜西西CeCe
hdfshadoop大数据HDFS-JAVA接口文件头歌Java
目录1实验名称:2实验目的3实验内容4实验原理5实验过程或源代码5.1HDFS的基本操作5.2HDFS-JAVA接口之读取文件5.3HDFS-JAVA接口之上传文件5.4HDFS-JAVA接口之删除文件6实验结果6.1HDFS的基本操作6.2HDFS-JAVA接口之读取文件6.3HDFS-JAVA接口之上传文件6.4HDFS-JAVA接口之删除文件1实验名称:分布式文件系统HDFS2实验目的1.理
- Java 递归方法详解:从基础语法到实战应用,彻底掌握递归编程思想
大葱白菜
java合集java开发语言个人开发后端学习
作为一名Java开发工程师,你一定在开发中遇到过需要重复调用自身逻辑的问题,比如:树形结构处理、文件夹遍历、斐波那契数列、算法实现(如DFS、回溯、分治)等。这时候,递归方法(RecursiveMethod)就成为你不可或缺的工具。本文将带你全面掌握:什么是递归方法?递归的三要素(边界条件、递归公式、递归方向)递归与循环的对比常见递归问题与实现(阶乘、斐波那契、汉诺塔、树遍历等)递归在真实项目中的
- 【Luogu】每日一题——Day8. P13085 [SCOI2009] windy 数(加强版)(数位DP)
KyollBM
深度优先算法图论
链接:P13085[SCOI2009]windy数(加强版)-洛谷题目:思路:数位DP看到这种统计符合XX特征的数字时我们就能想到利用数位DP来做我们通常有两种做法,一种是DFS+记忆化,另一种则是直接DP预处理所有情况然后统计这里我们采用DFS+记忆化来实现,因为比较简单易懂我们通常使用4个量来递归,now代表现在是第几位,last代表上一位我们填了什么,allzero表示之前是不是全是0,li
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- Java机考题:815. 公交路线 图论BFS
吗喽对你问好
java图论宽度优先
给你一个数组routes,表示一系列公交线路,其中每个routes[i]表示一条公交线路,第i辆公交车将会在上面循环行驶。例如,路线routes[0]=[1,5,7]表示第0辆公交车会一直按序列1->5->7->1->5->7->1->...这样的车站路线行驶。现在从source车站出发(初始时不在公交车上),要前往target车站。期间仅可乘坐公交车。求出最少乘坐的公交车数量。如果不可能到达终点
- 免费开源 PDFsam Basic 一键搞定合并 拆分 旋转等 8 大 PDF 基础操作
阿文软件园
开源软件windows电脑
各位办公小能手们!今天给大家介绍一款超厉害的免费开源多功能PDF处理工具——PDFsamBasic,它主要就是为咱这些有基础PDF文档编辑需求的人准备的。先说说它的核心功能哈。第一个是PDF合并,能把好几个PDF文件合成一个,你还能选合并全部或者指定页面范围,像“1-10,14,25-”这种都没问题,书签、表单合并这些细节它也能处理得明明白白。第二个是PDF拆分,可以按页码、文件大小、书签级别来拆
- PDF 拆分合并PDFSam:开源免费 多文件合并 + 按页码拆分 本地处理
文哥工具箱1
电脑开源软件软件构建
各位打工人和学生党们,你知道吗,处理PDF文件简直是咱们的日常噩梦啊,尤其是遇到要合并好几个文件,或者从中抠几页出来的时候,简直头大如斗!今天给你们安利一个神仙工具,PDFSam,听我的,不好用你回来打我(开玩笑的啦)!这家伙可是开源免费的,完全不用你掏一分钱,软件下载地址安装包它能干嘛呢,可太多了!你想把好几个PDF拧成一股绳?没问题,合并功能分分钟搞定。想把一个大PDF拆成小的?也行!按页码拆
- 深度优先搜索(DFS) vs 广度优先搜索(BFS):核心区别与应用场景
#深度优先搜索(DFS)vs广度优先搜索(BFS):核心区别与应用场景>关键词:深度优先搜索、广度优先搜索、图遍历、算法比较、应用场景>摘要:本文通过迷宫探险和消防灭火的生动比喻,揭示DFS与BFS的核心原理。结合Python代码示例和图解说明,深入解析两种算法的实现差异,并通过社交网络分析等实际案例展示它们的应用场景选择依据。##背景介绍###目的和范围本指南旨在帮助读者理解两种基础图遍历算法的
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在