- 带权重的最近任务安排算法(最近面试策略)
WePlayDirty
算法面试数据结构
一个任务j在sj开始,并在fj结束;并且每个任务都有权重。任务相容:任务安排的时间没有重叠目标:找到最大权重,且相容的任务安排#includeusingnamespacestd;typedefstruct{intiStartT;intiFinshT;intiWight;}TASK_INFO;intg_i=0;voidFindSolution(TASK_INFO*schedule,int**comp
- 算法-队列-买票需要的时间
程序员南飞
算法数据结构java职场和发展leetcode
力扣题目:2073.买票需要的时间-力扣(LeetCode)有n个人前来排队买票,其中第0人站在队伍最前方,第(n-1)人站在队伍最后方。给你一个下标从0开始的整数数组tickets,数组长度为n,其中第i人想要购买的票数为tickets[i]。每个人买票都需要用掉恰好1秒。一个人一次只能买一张票,如果需要购买更多票,他必须走到队尾重新排队(瞬间发生,不计时间)。如果一个人没有剩下需要买的票,那他
- Decoder-Only、Encoder-Only、Encoder-Decoder 区别
会喘气的粽子丶
nlp人工智能
Decoder-Only、Encoder-Only和Encoder-Decoder是三种常见的神经网络架构,主要用于自然语言处理(NLP)任务。它们在结构和应用上有显著的区别。1.Decoder-Only架构描述:仅包含解码器部分,没有编码器。应用:通常用于生成任务,如语言模型和对话系统。代表模型:GPT(GenerativePre-trainedTransformer)特点:自回归生成:模型通过
- 智能化工具软件在教育领域的革命性应用:InsCode AI IDE引领编程教育新时代
InsCode AI IDE
inscode人工智能ide
智能化工具软件在教育领域的革命性应用:InsCodeAIIDE引领编程教育新时代最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE引言随着信息技术的飞速发展,编程技能已经成为现代社会不可或缺的一部分。无论是计算机科学专业的学生,还是希望掌握编程技能以提升就业竞争力的职场人士,编程教育的重要性日益凸显。然而,对于许多初学者来说,编程学习往往充满了挑战和困惑。如何让编程变得更
- 关系数据库的基本术语
iamphp
系统架构设计师数据库
(1)属性(Attribute):在现实世界中,要描述一个事物常常取若干特征来表示。这些特征称为属性。例如学生通过学号、姓名、性别、系别、年龄、籍贯等属性来描述。(2)域(Domain):每个属性的取值范围对应一个值的集合,称为该属性的域。例如,学号的域是6位整型数;姓名的域是10位字符;性别的域为{男,女}等。一般在关系数据模型中,对域还加了一个限制,即所有的域都应是原子数据(AtomicDat
- 【重温设计模式】模板方法模式及其Java示例
万猫学社
重温设计模式及其Java实现设计模式模板方法模式java
模板方法模式的基本概念模板方法模式是一种常见的设计模式,它的名字来源于其核心思想:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。听起来可能有些抽象,但其实我们在生活中经常会遇到这样的场景。比如,我们在做饭时,通常会有一套固定的流程:洗菜、切菜、炒菜。这个流程就是一个模板,而具体的做法,比如切菜的方式、炒菜的时间等,就是
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 基于 Spring Cloud + Sentinel 的全面流量治理方案
power-辰南
java技术架构师成长专栏springcloudsentinelspring流量治理
一、精准评估系统最大负载1.流量建模历史日志分析流量特征提取业务场景拆解流量模型构建容量预测模型实施方法:使用ELK分析6个月Nginx日志,提取分时/分业务QPS曲线构建典型场景模型:日常流量(正态分布)、促销流量(脉冲模型)、恶意攻击(毛刺识别)容量公式:单实例容量=(CPU核心数*1000ms)/平均RT(ms)2.数据模拟与环境搭建#使用tcpcopy复制生产流量./tcpcopy-x80
- AI大模型学习之白话笔记(一)-- GPT和LLM
Langchain
人工智能学习笔记langchainpython机器人大模型
前言2022年底第一次听说chatGPT,从最初的对话,到如今的文生视频Sora,带来的效果,越来越超出我们的想象。在2023年,我尝试去了解GPT可以干什么,有什么作用,该怎么用,不过变化太快,最终也没有找到一个好的方式干进去。为什么变化这么快,说到底,是AI大模型带来的巨变。现在很多大厂都在降薪裁员,也有不少公司在AllinAI,我们都有一个预感,要变天了。你想想,如果有一天,一款游戏的所有美
- YashanDB表介绍
数据库
本文内容来自YashanDB官网,原文内容请见https://doc.yashandb.com/yashandb/23.3/zh/%E6%A6%82%E5%BF%B5%...在关系型数据库中一个表就是一个关系(Relation),一个关系数据库可以包含多个表。表是一种按行、列排列的具有相关信息的逻辑结构,是关系数据库中组织数据的基本单元。表的元素列数据库中表包含若干个列(或字段),列表示关系模型的
- 【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码
默默科研仔
粉丝福利机器学习人工智能
标题:【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码一、引言1.1研究背景和意义概述研究的背景以及该研究在领域内的重要性。1.2研究现状分析当前领域的研究进展和存在的问题。二、极限学习机(ELM)基本原理2.1ELM的基本模型描述ELM的基本模型结构和工作原理。2.2ELM的学习过程介绍ELM的学习算法和训练过程。三、半监督极限学习机(SS-ELM)3.1SS-ELM的提
- DolphinScheduler环境搭建、服务启动等常见问题及解决方案
数据库
ApacheDolphinScheduler作为一款分布式易扩展的工作流调度系统,广泛应用于大数据任务编排。然而,在实际使用中,用户可能会遇到环境搭建、服务启动、工作流执行等问题。本文结合社区文档与用户实践经验,整理以下高频问题及详细解决方案,帮助用户快速定位并解决问题。一、安装与部署问题环境依赖配置错误问题:部署时因缺少JDK、Maven或数据库配置导致失败。解决方案:安装JDK1.8+并配置J
- 文心快码智能体不断发展,真正与AI协同工作
文心快码(BaiduComate)是基于百度文心大模型,在研发全流程全场景下为开发者提供辅助建议的智能代码助手。结合百度积累多年的编程现场大数据、外部优秀开源数据,可为开发者生成更符合实际研发场景的优秀代码,提升编码效率,释放“十倍”软件生产力。如果您对【文心快码企业版】感兴趣,希望获取更多详细信息,点击进入企业服务咨询我们会尽快安排专业人员与您取得联系!我们期待与您建立联系,为您的企业带来更高效
- 什么关系型数据库和非关系型数据库
yqcoder
数据库nosql
一、关系型数据库1.定义关系型数据库是基于关系模型的数据库,用二维表结构来存储数据,表与表之间可以通过关系(如主键-外键关系)相互关联。2.特点2.1数据结构化数据按照预定义的表结构进行存储,每个表有固定的列和数据类型。例如,一个存储员工信息的表,可能包含“员工ID”“姓名”“部门”等列,每列都有明确的数据类型。2.2支持SQL查询使用结构化查询语言(SQL)进行数据的增删改查操作,SQL是一种标
- NoSQL数据库-体系框架
iamphp
系统架构设计师nosql数据库
NoSQL整体框架分为4层,由下至上分为数据持久层(DataPersistence)、数据分布层(DataDistributionModel)、数据逻辑模型层(DataLogicalModel)和接口层(Interface),层次之间相辅相成,协调工作。(1)数据持久层定义了数据的存储形式,主要包括基于内存、硬盘、内存和硬盘接口、订制可插拔4种形式。基于内存形式的数据存取速度最快,但可能会造成数据
- HarmonyOS Next模型结构优化策略
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型结构优化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型结构优化原理与目标(一)基本原理在HarmonyOSNext的模型世界里,模型结构优化就像是精心设计一座桥梁,要在保证稳固(性
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- 深入 Python 执行模型:掌握程序运行的底层逻辑
tekin
Pythonpython开发语言执行模型命名与绑定异常处理作用域命名空间
本文将深入解读Python执行模型,带你全面了解Python程序的运行机制,包括程序结构、命名与绑定规则、异常处理方式等关键内容。通过丰富的示例、直观的图表以及对比分析,帮助你深入理解执行模型,为编写高效、稳定的Python代码打下坚实基础。Python执行模型全解析一、程序的结构Python程序由代码块构成,模块、函数体、类定义、交互式输入命令、脚本文件、通过-c选项指定的脚本命令、以-m参数运
- Jieba分词算法应用
C嘎嘎嵌入式开发
算法服务器数据库c++linux
1.Jieba分词算法简介Jieba是一个用于中文分词的Python库,其核心思想是基于词典和统计模型来进行分词。由于中文文本中没有明显的单词边界,因此分词是中文处理中的一个重要任务。Jieba提供了以下几种主要的分词模式:精确模式:尽可能准确地切分句子,适合用于文本分析。全模式:将句子中所有可能的词语都切分出来,适合用于搜索引擎。搜索引擎模式:在精确模式的基础上,对长词再次切分,适合用于搜索引擎
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- HarmonyOS Next智能家居控制系统的模型轻量化实践
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)在智能家居控制系统中模型轻量化技术的实践应用,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能家居控制需求与模型轻量化架构搭建(一)常见需求分析设备状态识别需求智能家居控制系统需要准确识别各种智能设
- HarmonyOS Next智能驾驶辅助系统的模型轻量化应用
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)在智能驾驶辅助系统中模型轻量化技术的应用,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能驾驶场景与模型轻量化策略规划(一)关键场景分析车道线检测场景车道线检测是智能驾驶辅助系统的基础功能之一,对于
- HarmonyOS Next智能安防系统中的模型轻量化实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建智能安防系统中的模型轻量化技术实践,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能安防系统需求与模型轻量化方案设计(一)功能需求分析目标检测需求在智能安防系统中,目标检测是核心功能之一。它需要
- YashanDB表介绍
数据库
本文内容来自YashanDB官网,原文内容请见https://doc.yashandb.com/yashandb/23.3/zh/%E6%A6%82%E5%BF%B5%...在关系型数据库中一个表就是一个关系(Relation),一个关系数据库可以包含多个表。表是一种按行、列排列的具有相关信息的逻辑结构,是关系数据库中组织数据的基本单元。表的元素列数据库中表包含若干个列(或字段),列表示关系模型的
- DeepSeek的训练与优化流程
程序猿000001号
DeepSeek训练优化
DeepSeek的训练与优化流程一、数据工程体系1.多模态数据融合处理动态数据湖架构:实时摄入互联网文本、科学论文、专利文献、传感器数据等20+数据源日均处理原始数据量达1.2PB,支持200+文件格式自动解析智能清洗流水线:基于大模型的语义去重算法,重复数据识别准确率99.6%创新应用对抗网络生成噪声数据,增强模型鲁棒性专利级数据质量评估体系(DQAS3.0)包含87个质量维度2.知识增强处理结
- DeepSeek行业应用实践报告100+份汇总解读|附PDF下载
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=40240在当下快速发展的科技浪潮中,人工智能(AI)已成为推动各行业变革的核心力量。AI大模型的出现,更是为众多领域带来了全新的发展机遇与挑战。本报告聚焦于AI大模型中的佼佼者——DeepSeek,通过深度剖析其技术特性、应用场景、市场表现以及未来趋势,为读者呈现一个全面且深入的AI行业发展图景。本报告汇总洞察基于文末157份DeepSeek行
- 正则化(Regularization)和正则表达式(Regular Expression)区别
Dontla
正则表达式
文章目录1.**正则化(Regularization)**2.**正则表达式(RegularExpression)**关键区别为什么名字相近?正则化(Regularization)和正则表达式(RegularExpression)不是同一个概念,它们是两个完全不同的术语,应用于不同的领域。1.正则化(Regularization)领域:机器学习/统计学。定义:正则化是一种用于防止模型过拟合(Ove
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 菜鸟的成长之路
东风吹破了青花瓷
计算机数据结构与算法基础篇入门
菜鸟的成长之路基础能力数据结构与算法数据结构链表数组栈队列字典bitset树堆完全二叉树平衡二叉树二叉查找树B树红黑树lsm树图通用算法排序十种排序算法查找二分查找深度广度优先搜索分治贪心回朔动态规划网络协议OSITCP/IP状态转移拥塞控制可靠工作原理socket编程HTTP/HTTPSIO模型同步IOreactor阻塞IO非阻塞IOIO多路复用信号驱动异步IOC10K问题长链接短链接编译原理l
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc