以下示例显示了 matrix_multiply 函数,可计算两个方阵的乘积。
// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
for (size_t i = 0; i < size; i++)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
}
}
以下示例演示了该 parallel_matrix_multiply 函数,该函数使用 parallel_for 算法并行执行外部循环。
// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
parallel_for (size_t(0), size, [&](size_t i)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
});
}
此示例并行化外部循环只是因为它执行了足够的工作,可从并行处理的开销中受益。 如果将内部循环并行化,你将不会获得性能提升,因为内部循环执行的少量工作并不能克服并行处理的开销问题。 因此,仅并行化外部循环是在大多数系统上最大程度地发挥并发优势的最佳方式。
以下更完整的示例比较了 matrix_multiply 函数与 parallel_matrix_multiply 函数的性能。
// parallel-matrix-multiply.cpp
// compile with: /EHsc
#include
#include
#include
#include
using namespace concurrency;
using namespace std;
// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template
__int64 time_call(Function&& f)
{
__int64 begin = GetTickCount();
f();
return GetTickCount() - begin;
}
// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size);
// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size);
// Initializes the given square matrix with values that are generated
// by the given generator function.
template
double** initialize_matrix(double** m, size_t size, Generator& gen);
// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
for (size_t i = 0; i < size; i++)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
}
}
// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
parallel_for (size_t(0), size, [&](size_t i)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
});
}
int wmain()
{
// The number of rows and columns in each matrix.
// TODO: Change this value to experiment with serial
// versus parallel performance.
const size_t size = 750;
// Create a random number generator.
mt19937 gen(42);
// Create and initialize the input matrices and the matrix that
// holds the result.
double** m1 = initialize_matrix(create_matrix(size), size, gen);
double** m2 = initialize_matrix(create_matrix(size), size, gen);
double** result = create_matrix(size);
// Print to the console the time it takes to multiply the
// matrices serially.
wcout << L"serial: " << time_call([&] {
matrix_multiply(m1, m2, result, size);
}) << endl;
// Print to the console the time it takes to multiply the
// matrices in parallel.
wcout << L"parallel: " << time_call([&] {
parallel_matrix_multiply(m1, m2, result, size);
}) << endl;
// Free the memory that was allocated for the matrices.
destroy_matrix(m1, size);
destroy_matrix(m2, size);
destroy_matrix(result, size);
}
// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size)
{
double** m = new double*[size];
for (size_t i = 0; i < size; ++i)
{
m[i] = new double[size];
}
return m;
}
// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size)
{
for (size_t i = 0; i < size; ++i)
{
delete[] m[i];
}
delete m;
}
// Initializes the given square matrix with values that are generated
// by the given generator function.
template
double** initialize_matrix(double** m, size_t size, Generator& gen)
{
for (size_t i = 0; i < size; ++i)
{
for (size_t j = 0; j < size; ++j)
{
m[i][j] = static_cast(gen());
}
}
return m;
}
四核上的输出如下:
serial: 3853
parallel: 1311