【题目】
用递归颠倒一个栈。例如输入栈{1, 2, 3, 4, 5},1在栈顶。颠倒之后的栈为{5, 4, 3, 2, 1},5处在栈顶。
【分析】
乍一看到这道题目,第一反应是把栈里的所有元素逐一pop出来,放到一个数组里,然后在数组里颠倒所有元素,最后把数组中的所有元素逐一push进入栈。这时栈也就颠倒过来了。颠倒一个数组是一件很容易的事情。不过这种思路需要显示分配一个长度为O(n)的数组,而且也没有充分利用递归的特性。
我们再来考虑怎么递归。我们把栈{1, 2, 3, 4, 5}看成由两部分组成:栈顶元素1和剩下的部分{2, 3, 4, 5}。如果我们能把{2, 3, 4, 5}颠倒过来,变成{5, 4, 3, 2},然后在把原来的栈顶元素1放到底部,那么就整个栈就颠倒过来了,变成{5, 4, 3, 2, 1}。
接下来我们需要考虑两件事情:一是如何把{2, 3, 4, 5}颠倒过来变成{5, 4, 3, 2}。我们只要把{2, 3, 4, 5}看成由两部分组成:栈顶元素2和剩下的部分{3, 4, 5}。我们只要把{3, 4, 5}先颠倒过来变成{5, 4, 3},然后再把之前的栈顶元素2放到最底部,也就变成了{5, 4, 3, 2}。
至于怎么把{3, 4, 5}颠倒过来……很多读者可能都想到这就是递归。也就是每一次试图颠倒一个栈的时候,现在栈顶元素pop出来,再颠倒剩下的元素组成的栈,最后把之前的栈顶元素放到剩下元素组成的栈的底部。递归结束的条件是剩下的栈已经空了。这种思路的代码如下:
【代码】
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
// Reverse a stack recursively in three steps: // 1. Pop the top element // 2. Reverse the remaining stack // 3. Add the top element to the bottom of the remaining stack template < typename T> void ReverseStack(std::stack<T> &stack) { if (stack.empty()) return ; T top = stack.top(); stack.pop(); ReverseStack(stack); AddToStackBottom(stack, top); } // Add an element to the bottom of a stack: template < typename T> void AddToStackBottom(std::stack<T> &stack, T t) { if (stack.empty()) { stack.push(t); } else { T top = stack.top(); stack.pop(); AddToStackBottom(stack, t); stack.push(top); } } |
【参考】
http://zhedahht.blog.163.com/blog/static/25411174200943182411790/