- 机器学习在智能供应链中的应用:需求预测与库存优化
Blossom.118
机器学习与人工智能机器学习人工智能机器人深度学习python神经网络sklearn
在当今全球化的商业环境中,供应链管理的效率和灵活性对于企业的竞争力至关重要。智能供应链通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从原材料采购到产品交付的全流程优化。机器学习技术在智能供应链中的应用尤为突出,尤其是在需求预测和库存优化方面。本文将探讨机器学习在智能供应链中的应用,并分析其带来的机遇和挑战。一、智能供应链中的需求预测准确的需求预测是供应链管理的核心。需求预测
- 基于SpringBoot律师事务所案件管理系统的设计与实现
一点教程
Java项目springboot后端javaspring律师事务所案件管理系统
博主主页:一点教程博主简介:专注Java技术领域和毕业设计项目实战、Java微信小程序、安卓等技术开发,远程调试部署、代码讲解、文档指导、ppt制作等技术指导。主要内容:毕业设计,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Python、Nodejs、小程序、安卓app、大数据等设计与开发感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以和博主沟通,希
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- 凌晨の3点,线程池竟在服务器里偷偷····
山海上的风
Java服务器java-ee线程池
凌晨の3点,线程池の竟在服务器里偷偷榨干CPU····⚡️CPU:JAVAKing为窝发声,HELPME⚡️JAVAKING今天将揭露线程池的罪恶行为⚡️《线程池:OH,YES》线程池到底对项目做了什么想象一下:每次点外卖都新雇一个厨师,吃完就开除——这就是裸奔线程的日常!在高并发三巨头(电商秒杀、金融交易、大数据处理)中:1️⃣CPU哭诉:90%时间在面试线程,10%干活(线程切换开销)2️⃣
- 探索Kafka监控新维度:Burrow深度解析
孙爽知Kody
探索Kafka监控新维度:Burrow深度解析BurrowKafkaConsumerLagChecking项目地址:https://gitcode.com/gh_mirrors/bu/Burrow项目介绍在大数据领域,ApacheKafka作为实时数据流处理的领军者,其稳定性和性能备受赞誉。然而,对于消费者端的监控始终是一个挑战。这时,LinkedIn开源的Burrow应运而生,它是一款专为Kaf
- 说说自己Python 代码优化实践
chilavert318
大数据linux运维python
今年上半年在外省做一个大数据相关的项目,在review项目组成员的代码时,发现一段处理大数据集的模块存在明显性能瓶颈:10万条数据的清洗流程耗时近20分钟,CPU占用率却始终在30%以下。深入分析后发现,看似简洁的Python代码背后,隐藏着诸多可以优化的细节——这并非个例,我们的程序在追求代码可读性时,往往忽略了Python特有的性能陷阱。今天抽点时间,从我实践中的代码就python开发,从内存
- 基于python的公众号文章爬取思路(总结版)
大数据小学僧
python开发语言爬虫微信公众平台
目录一、技术方案分类1.接口直连模式(推荐)2.网页解析模式3.第三方API模式二、核心技术栈三、爬虫实现步骤1.接口直连模式(微信公众平台API)2.网页解析模式(搜狗微信搜索)3.第三方API模式(如清博大数据)四、可视化界面实现五、数据存储方案六、高级技巧七、注意事项八、推荐工具链一、技术方案分类1.接口直连模式(推荐)2.网页解析模式3.第三方API模式二、核心技术栈三、爬虫实现步骤1.接
- TDengine 运维全攻略:五种备份与恢复方法深度解析(2025 最新版)
TDengine (老段)
TDengine运维tdengine运维大数据涛思数据物联网时序数据库数据库
备份与还原是数据库运维的核心环节,TDengine提供了五种主流数据备份方法,覆盖不同场景需求。本文将详细解析各方法的特性与操作要点。1.taosdump介绍taosdump是TDengine社区版首选的数据备份工具(企业版同样支持),其核心特点是操作简便、支持多线程处理,且备份文件采用ApacheAvro格式(大数据领域通用数据交换格式),便于向其他系统共享数据。工具支持跨平台连接远程服务器执行
- Flink项目基础配置指南
Edingbrugh.南空
flink大数据flink大数据
在大数据处理领域,ApacheFlink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发FlinkJar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置
- 大数据智能风控核心:模型
johnny233
读书笔记大数据
概述模型线性判别分析方法,SirRonaldFisher最早提出模型评分的概念。个人FICO模型信用分。巴塞尔委员会发布巴塞尔Ⅱ协议,推出内部评级法(InternalRatingBasedApproach,IRB)。IRB综合考虑客户评级和债项评级,通过违约概率(ProbabilityofDefault,PD)、违约损失率(LossGivenDefault,LGD)、违约风险暴露(Exposure
- Python爬虫实战:研究Bleach库相关技术
ylfhpy
爬虫项目实战python爬虫php开发语言Bleach
1.引言在大数据时代,网络内容采集已成为信息获取的重要手段。Python凭借其丰富的爬虫库(如Requests、Scrapy)和灵活的数据处理能力,成为网页爬虫开发的首选语言。然而,从互联网获取的内容往往包含恶意脚本、不安全标签等安全隐患,直接使用可能导致XSS(跨站脚本攻击)、数据泄露等风险。Bleach作为专业的HTML净化库,通过白名单机制提供了可靠的内容安全过滤方案。本文将结合实际案例,详
- Python爬虫实战:研究untangle库相关技术
ylfhpy
爬虫项目实战python爬虫php开发语言untangle
1.引言在大数据时代,网络数据已成为重要的信息资源。XML和HTML作为互联网上最常用的数据表示格式,广泛应用于API接口、网站结构和数据交换等场景。Python凭借其丰富的爬虫库(如Requests、Scrapy)和灵活的数据处理能力,成为网络数据采集的首选语言。然而,从复杂的XML/HTML文档中提取结构化数据仍然面临诸多挑战,如文档结构多样性、动态内容渲染和数据格式转换等问题。Untangl
- 【头歌】MapReduce基础实战 答案
Seven_Two2
头歌大数据实验答案c#开发语言
本专栏已收集大数据所有答案第1关:成绩统计编程要求使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。答案:需要先在命令行启动HDFS#命令行start-dfs.sh再在代码文件中写入以下代码#代码文件importjava.io.IOException;importjava.util.S
- 电力行业 | 抽水蓄能场景下,百万测点数据如何统一采集与接入?
DolphinDB智臾科技
物联网dolphindb数据库抽水蓄能电力数据采集数据接入
在电力行业,抽水蓄能是目前最成熟、已经大规模化应用、兼顾发电和储能的一项技术。为了保障电站的平稳运行,借助物联网、大数据等技术,对电站各类运行设备进行实时采集,如机组振动、油压波动、瓦温变化等生产监测数据,已成为电站稳定运维的重要技术手段。在之前的文章储能业|低成本部署!DolphinDB打造抽水蓄能一体化解决方案-CSDN博客中,我们介绍了DolphinDB在抽水蓄能场景中的全链路解决方案。今天
- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- 利用大数据领域Doris提升企业数据决策效率
大数据洞察
大数据网络ai
利用大数据领域Doris提升企业数据决策效率关键词:大数据、Doris、企业数据决策、数据处理、效率提升摘要:本文围绕利用大数据领域的Doris来提升企业数据决策效率展开。首先介绍了背景,包括目的、预期读者、文档结构和相关术语。接着阐述了Doris的核心概念、架构以及与其他系统的联系。详细讲解了Doris的核心算法原理和具体操作步骤,并给出Python代码示例。同时介绍了相关的数学模型和公式。通过
- Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案
mmlihaio
数据库云原生python
Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案1.引言在当今的人工智能和大数据时代,高效的向量检索已成为许多应用场景的关键需求。Tair作为阿里云开发的云原生内存数据库服务,不仅提供了丰富的数据模型和企业级能力,还引入了基于非易失性内存(NVM)存储介质的持久内存优化实例。本文将深入探讨如何利用Tair向量数据库功能,实现高性能的向量存储和检索。2.Tair向量数据库概述Ta
- 解锁阿里云E-MapReduce:大数据处理的超能力秘籍
云资源服务商
阿里云云计算人工智能云原生
一、引言在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业创新发展的核心驱动力。从电商平台精准的个性化推荐,到金融机构严密的风险评估,再到医疗领域高效的疾病预测,大数据的应用场景无处不在,深刻地改变着我们的生活与工作方式。在这片充满机遇与挑战的大数据领域中,阿里云E-MapReduce宛如一颗璀璨的明星,占据着举足轻重的地位。它凭借强大的大数据处理能力、卓越的性能表现以及丰富的功能特性,为企业和
- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- 图扑软件智慧云展厅,开启数字化展馆新模式
智慧园区
可视化5g人工智能大数据安全云计算
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。图扑软件运用HT强大的渲染功能,数字孪生“云展位”,1:1复现实际展厅内部独特的结构造型和建筑特色。也可以第一人称视角漫游,模拟用户在展厅内的参观场景,在保
- vue大数据量列表渲染性能优化:虚拟滚动原理
Java小卷
Vue3开源组件实战vue3自定义Tree虚拟滚动
前面咱完成了自定义JuanTree组件各种功能的实现。在数据量很大的情况下,我们讲了两种实现方式来提高渲染性能:前端分页和节点数据懒加载。前端分页小节:Vue3扁平化Tree组件的前端分页实现节点数据懒加载小节:ElementTreePlus版功能演示:数据懒加载关于扁平化结构Tree和嵌套结构Tree组件的渲染嵌套结构的Tree组件是一种递归渲染,性能上比起列表结构的v-for渲染比较一般。对于
- redis的scan使用详解,结合spring使用详解
黑皮爱学习
redis自学笔记redisspring数据库
Redis的SCAN命令是一种非阻塞的迭代器,用于逐步遍历数据库中的键,特别适合处理大数据库。下面详细介绍其使用方法及在Spring框架中的集成方式。SCAN命令基础SCAN命令的基本语法:SCANcursor[MATCHpattern][COUNTcount]cursor:迭代游标,初始为0,每次迭代返回新的游标值。MATCHpattern:可选,用于过滤键的模式(如user:*)。COUNTc
- MongoDB 高性能应用场景与实践
AI自闭实验者
mongodb数据库
```htmlMongoDB高性能应用场景与实践MongoDB高性能应用场景与实践随着大数据时代的到来,数据库作为数据存储和管理的核心工具,其性能和可扩展性显得尤为重要。在众多的数据库解决方案中,MongoDB凭借其灵活的数据模型、高性能和易于扩展的特点,在许多场景下成为开发者的首选。什么是MongoDB?MongoDB是一个开源的、面向文档的NoSQL数据库管理系统。它以JSON样式的文档存储数
- 缓存与加速技术实践-MongoDB数据库应用
曼汐 .
数据库缓存mongodb
一.什么是MongoDBMongoDB是一个文档型数据库,数据以类似JSON的文档形式存储。MongoDB的设计理念是为了应对大数据量、高性能和灵活性需求。MongoDB使用集合(Collections)来组织文档(Documents),每个文档都是由键值对组成的。数据库(Database):存储数据的容器,类似于关系型数据库中的数据库。集合(Collection):数据库中的一个集合,类似于关系
- 自学Java怎么入门
Java鼠鼠吖
java开发语言
自学Java其实没有想象中那么难,只要找对方法,循序渐进地学习,很快就能上手。下面我结合自己的经验,给你整理一条清晰的学习路径,咱们一步步来。一、先了解Java能做什么在开始之前,建议你先看看Java都能用在哪些地方。比如开发企业级系统、Android应用、大数据处理等等。这样你就能明白为什么要学它,也更有动力。Java最大的特点就是"一次编写,到处运行",这要归功于JVM虚拟机。二、准备好学习环
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 智能汽车图像及视频处理方案,支持视频智能包装创作能力
美摄科技
汽车
在这个日新月异的智能时代,每一帧画面都承载着超越想象的力量。随着自动驾驶技术的飞速发展,智能汽车不仅成为了未来出行的代名词,更是技术与艺术完美融合的典范。在这场变革的浪潮中,美摄科技以创新为翼,推出了领先的智能汽车图像及视频处理方案,为智能汽车行业带来了前所未有的视觉盛宴,重新定义了智能出行的视觉体验。一、智能重塑,视觉新境界美摄科技的智能汽车图像及视频处理方案,是基于深度学习、人工智能及大数据处
- 蜂鸟云平台大更新:地图空间定价重塑与功能全面升级
蜂鸟视图fengmap
信息可视化蜂鸟云地图编辑器地图绘制工具室内外地图一体化智慧园区蜂鸟视图
1.引言随着云计算、大数据以及人工智能技术的快速发展,企业对云平台的需求日益增长。蜂鸟云平台作为一款创新性的地图服务平台,已逐渐成为众多企业、政府及科研机构的核心依赖。为了更好地满足用户需求,提高平台的市场竞争力,蜂鸟云平台定期进行功能更新与优化。2024年9月21日,蜂鸟云平台将在晚上20:00至24:00进行一轮重要的系统更新。本次更新的核心内容包括地图空间的重新定价与功能优化,涉及制图、微程
- 【笔记-软考】大数据架构-Lambda与Kappa架构对比
我叫白小猿
软考软考架构大数据KappaLambda
Author:赵志乾Date:2024-07-28Declaration:AllRightReserved!!!1.简介大数据系统架构的设计思想很大程度受技术条件和思维模式的限制;Lambda架构在提出初期面向小范围业务,直接将成熟离线处理技术(Hadoop)和实时处理技术(Storm)相结合,用View模型将二者处理后得到的输出结果结合起来,在服务层进行统一后,再开放给上层服务,是相当可行且高效
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比