Container With Most Water

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.

 

我能想到的O(n^2)的算法。不过会出现超时。

C++实现如下:

#include<iostream>

#include<vector>

using namespace std;



class Solution

{

public:

    int maxArea(vector<int> &height)

    {

        if(height.empty()||height.size()==1)

            return 0;

        int n=height.size();

        int i,j;

        int maxArea=0;

        for(i=0; i<n-1; i++)

        {

            for(j=i+1; j<n; j++)

            {

                int tmp=min(height[i],height[j])*(j-i);

                if(maxArea<tmp)

                    maxArea=tmp;

            }

        }

        return maxArea;

    }

};



int main()

{

    Solution s;

    vector<int> vec={2,4,1,3,0,6};

    cout<<s.maxArea(vec)<<endl;

}

参考:http://www.cnblogs.com/lichen782/p/leetcode_Container_With_Most_Water.html

 

O(n)的复杂度。保持两个指针i,j;分别指向长度数组的首尾。如果ai 小于aj,则移动i向后(i++)。反之,移动j向前(j--)。如果当前的area大于了所记录的area,替换之。这个想法的基础是,如果i的长度小于j,无论如何移动j,短板在i,不可能找到比当前记录的area更大的值了,只能通过移动i来找到新的可能的更大面积。

C++实现代码如下:

#include<iostream>

#include<vector>

using namespace std;



class Solution

{

public:

    int maxArea(vector<int> &height)

    {

        if(height.empty()||height.size()==1)

            return 0;

        int n=height.size();

        int i,j;

        int maxArea=0;

        i=0;

        j=n-1;

        while(i<j)

        {

            int tmp=min(height[i],height[j])*(j-i);

            if(maxArea<tmp)

                maxArea=tmp;

            if(height[i]<height[j])

                i++;

            else

                j--;

        }

        return maxArea;

    }

};



int main()

{

    Solution s;

    vector<int> vec= {2,4,1,3,0,6};

    cout<<s.maxArea(vec)<<endl;

}

 

你可能感兴趣的:(contain)