CC Arithmetic Progressions (FFT + 分块处理)

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题目:给出n个数,选出三个数,按下标顺序形成等差数列

http://www.codechef.com/problems/COUNTARI

如果只是形成 等差数列并不难,大概就是先求一次卷积,然后再O(n)枚举,判断2 * a[i]的种数,不过按照下标就不会了。

有种很矬的,大概就是O(n)枚举中间的数,然后 对两边分别卷积,O(n * n * lgn)。

如果能想到枚举中间的数的话,应该可以进一步想到分块处理。

如果分为K块

那么分为几种情况 :

三个数都是在当前块中,那么可以枚举后两个数,查找第一个数,复杂度O(N/K * N/K)

两个数在当前块中,那么另外一个数可能在前面,也可能在后面,同理还是枚举两个数,查找,复杂度
O(N/K * N/K)

如果只有一个数在当前块中,那么就要对两边的数进行卷积,然后枚举当前块中的数,查询2 × a[i]。复杂度O(N * lg N)

那么总体就是O(k * (N/K * N/K + N * lg N))。

 

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cmath>

#include <algorithm>

using namespace std;

//FFT copy from kuangbin

const double pi = acos (-1.0);

// Complex  z = a + b * i  

struct Complex {

    double a, b;

    Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}

    Complex operator + (const Complex &c) const {

        return Complex(a + c.a , b + c.b);

    }

    Complex operator - (const Complex &c) const {

        return Complex(a - c.a , b - c.b);

    }

    Complex operator * (const Complex &c) const {

        return Complex(a * c.a - b * c.b , a * c.b + b * c.a);

    }

};

//len = 2 ^ k

void change (Complex y[] , int len) {

    for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {

        if (i < j) swap(y[i] , y[j]);

        int k = len / 2;

        while (j >= k) {

            j -= k;

            k /= 2;

        }

        if(j < k) j += k;

    } 

}

// FFT 

// len = 2 ^ k

// on = 1  DFT    on = -1 IDFT

void FFT (Complex y[], int len , int on) {

    change (y , len);

    for (int h = 2 ; h <= len ; h <<= 1) {

        Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));

        for (int j = 0 ; j < len ; j += h) {

            Complex w(1 , 0);

            for (int k = j ; k < j + h / 2 ; k ++) {

                Complex u = y[k];

                Complex t = w * y [k + h / 2];

                y[k] = u + t;

                y[k + h / 2] = u - t;

                w = w * wn;

            }

        }

    }

    if (on == -1) {

        for (int i = 0 ; i < len ; i ++) {

            y[i].a /= len;

        }

    }

}

const int N = 100005;

typedef long long LL;

int n , a[N];

int block , size;

LL num[N << 2];

int min_num = 30000 , max_num = 1;

int before[N] = {0}, behind[N] = {0} , in[N] = {0};

Complex x1[N << 2] ,x2[N << 2];

int main () {

    #ifndef ONLINE_JUDGE

        freopen("input.txt" , "r" , stdin);

    #endif

    scanf ("%d", &n);

    for (int i = 0 ; i < n ; ++ i) {

        scanf ("%d", &a[i]);

        behind[a[i]] ++;

        min_num = min (min_num , a[i]);

        max_num = max (max_num , a[i]);

    }

    LL ret = 0;

    block = min(n , 35);

    size = (n + block - 1) / block;

    for (int t = 0 ; t < block ; t ++) {

        int s = t * size , e = (t + 1) * size;

        if (e > n) e = n;

        for (int i = s ; i < e ; i ++) {

            behind[a[i]] --;

        }

        for (int i = s ; i < e ; i ++) {

            for (int j = i + 1 ; j < e ; j ++) {

                int m = 2 * a[i] - a[j];

                if(m >= 1 && m <= 30000) { 

                    // both of three in the block

                    ret += in[m];

                    // one of the number in the pre block

                    ret += before[m];

                }

                m = 2 * a[j] - a[i];

                if (m >= 1 && m <= 30000) {

                    // one of the number in the next block

                    ret += behind[m];

                }

            }

            in[a[i]] ++;

        }

        // pre block , current block , next block

        if (t > 0 && t < block - 1) {

            int l = 1;

            int len = max_num + 1;

            while (l < len * 2) l <<= 1;

            for (int i = 0 ; i < len ; i ++) {

                x1[i] = Complex (before[i] , 0);

            }

            for (int i = len ; i < l ; i ++) {

                x1[i] = Complex (0 , 0);

            }

            for (int i = 0 ; i < len ; i ++) {

                x2[i] = Complex (behind[i] , 0);

            }

            for (int i = len ; i < l ; i ++) {

                x2[i] = Complex (0 , 0);

            }

            FFT (x1 , l , 1);

            FFT (x2 , l , 1);

            for (int i = 0 ; i < l ; i ++) {

                x1[i] = x1[i] * x2[i];

            }

            FFT (x1 , l , -1);

            for (int i = 0 ; i < l ; i ++) {

                num[i] = (LL)(x1[i].a + 0.5);

            }

            for (int i = s ; i < e ; i ++) {

                ret += num[a[i] << 1];

            }

        }

        for (int i = s ; i < e ; i ++) {

            in[a[i]] --;

            before[a[i]] ++;

        }

    }

    printf("%lld\n", ret);

    return 0;

}


 

 

你可能感兴趣的:(progress)