POJ 3074 3076 Sudoku(Dancing Links)

题意:

求解数独。

思路:

1. 如何用 dancing links 求解数独?其中的精确覆盖策略十分精妙,感叹之余只能膜拜 Knuth 了;

2. 如何把数独问题分解成矩阵,假设是 9*9 数独问题,则分下面 4 种限制条件:

   a) 每一行元素不能重复;

   b) 每一列元素不能重复;

   c) 每个 3*3 矩阵元素不能重复;

   d) 每个格子只能存放一个数字;

3. 达到上述 4 个条件之后就可以构造 01 方阵了,列表示对于元素的限制,行代表所有格子的选择。所以有 81 * 4 列(对应上面 4 个条件),有 81 * 9 行。

5. 求解的要求是:选定其中的行,当且仅当把所有的列选择完毕之后,停止递归,当然要求每一列只有一个 1 存在。此时 Q 里面存放的就是一个可行解。

6. 其中 S 数组里面存放的是每一列 1 的个数。按照 DLX 算法的要求,每次递归总选择 1 最少的列开始,这样能够有效的减少分支。因为最终只是寻找一个可行解就返回。

7. Dancing Links 在下面 CSDN 链接的几篇博客比较清楚。简单描述下:

   a) 选定 1 最少的列,对其进行删除,同时删除此列上存在 1 的行。因为某个列只能选择一个 1 的缘故,所以选择了此列上某个 1 便不能选择其它 1;

   b) 选定删除列的某一行,删除此行上面存在 1 的列,即某一行达到了列所在的几个限制条件,理应对列进行删除。删除列时的操作同 a) 的操作;

   c) 如果所有的列都被删除了,则我们的任务完成,Q 中保存的即是我们曾经选中的行,即可行解。否则重复 a) 的操作或者进行回溯操作;

http://www.cppblog.com/notonlysuccess/archive/2009/07/10/89701.aspx

http://blog.csdn.net/mu399/article/details/7627763

 

// 3074

#include <iostream>

#include <algorithm>

using namespace std;



const int INFS = 0x3fffffff;

const int MAXC = 81 * 4;

const int MAXR = 81 * 9;

const int MAXN = MAXC * MAXR + 10;



int U[MAXN], D[MAXN], L[MAXN], R[MAXN];

int grid[MAXR+10][MAXC+10], col[MAXN], row[MAXN], S[MAXC+10], Q[MAXR+10], QC;



void remove(int c) {

    L[R[c]] = L[c];

    R[L[c]] = R[c];

    for (int i = D[c]; i != c; i = D[i]) {

        for (int j = R[i]; j != i; j = R[j]) {

            U[D[j]] = U[j];

            D[U[j]] = D[j];

            S[col[j]] -= 1;

        }

    }

}



void resume(int c) {

    for (int i = U[c]; i != c; i = U[i]) {

        for (int j = L[i]; j != i; j = L[j]) {

            U[D[j]] = D[U[j]] = j;

            S[col[j]] += 1;

        }

    }

    R[L[c]] = L[R[c]] = c;

}



bool dfs() {

    if (R[0] == 0)

        return true;



    int mins = INFS, c = 0;

    for (int i = R[0]; i != 0; i = R[i]) {

        if (S[i] < mins)

            mins = S[i], c = i;

    }

    remove(c);

    for (int i = D[c]; i != c; i = D[i]) {

        for (int j = R[i]; j != i; j = R[j])

            remove(col[j]);

        Q[QC++] = row[i];

        if (dfs())

            return true;

        QC -= 1;

        for (int j = L[i]; j != i; j = L[j])

            resume(col[j]);

    }

    resume(c);

    return false;

}



void solve(int ans[]) {

    QC = 0;

    dfs();

    for (int i = 0; i < QC; i++)

        ans[(Q[i]-1)/9] = (Q[i] - 1) % 9 + 1;

}



void buildmatrix(char data[]) {

    for (int i = 0; i < 9; i++) {

        for (int j = 0; j < 9; j++) {

            if (data[i*9+j] == '.') {

                for (int k = 1; k <= 9; k++) {

                    int r = (i * 9 + j) * 9 + k;

                    int c1 = 81 * 0 + i * 9 + k;

                    int c2 = 81 * 1 + j * 9 + k;

                    int c3 = 81 * 2 + (i / 3 * 3 + j / 3) * 9 + k;

                    int c4 = 81 * 3 + i * 9 + j + 1;

                    grid[r][c1] = grid[r][c2] = grid[r][c3] = grid[r][c4] = 1;

                }

            } else {

                int k = data[i*9+j] - '0';

                int r = (i * 9 + j) * 9 + k;

                int c1 = 81 * 0 + i * 9 + k;

                int c2 = 81 * 1 + j * 9 + k;

                int c3 = 81 * 2 + (i / 3 * 3 + j / 3) * 9 + k;

                int c4 = 81 * 3 + i * 9 + j + 1;

                grid[r][c1] = grid[r][c2] = grid[r][c3] = grid[r][c4] = 1;

            }

        }

    }

}



void builddlx() {

    memset(S, 0, sizeof(S));

    for (int i = 1; i <= MAXC; i++) 

        R[i-1] = L[i+1] = U[i] = D[i] = i;

    R[MAXC] = L[1] = 0;



    int c = MAXC;

    for (int i = 1; i <= MAXR; i++) {

        int cflag = -1;

        for (int j = 1; j <= MAXC; j++) {

            if (grid[i][j] == 1) {

                c += 1;

                S[j] += 1;



                row[c] = i;

                col[c] = j;

                U[c] = U[j];

                D[c] = j;

                D[U[j]] = c;

                U[j] = c;



                if (cflag == -1) {

                    R[c] = L[c] = c;

                    cflag = c;

                } else {

                    L[c] = L[cflag];

                    R[c] = cflag;

                    R[L[c]] = c;

                    L[cflag] = c;

                }

            }

        }

    }

}



bool initdata() {

    char data[100];

    scanf("%s", data);



    if (data[0] == 'e')

        return false;



    memset(grid, 0, sizeof(grid));

    buildmatrix(data);

    builddlx();

    return true;

}



int main() {

    while (initdata()) {

        int ans[100];

        solve(ans);

        for (int i = 0; i < 81; i++)

            printf("%d", ans[i]);

        printf("\n");

    }

    return 0;

}

// 3076
#include <iostream>

#include <algorithm>

using namespace std;



const int INFS = 0x3fffffff;

const int MAXC = 16 * 16 * 4;

const int MAXR = 16 * 16 * 16;

const int MAXN = MAXC * MAXR + 10;



int U[MAXN], D[MAXN], L[MAXN], R[MAXN];

int grid[MAXR+10][MAXC+10], col[MAXN], row[MAXN], S[MAXC+10], Q[MAXR+10], QC;

char data[20][20];



void remove(int c) {

    L[R[c]] = L[c];

    R[L[c]] = R[c];

    for (int i = D[c]; i != c; i = D[i]) {

        for (int j = R[i]; j != i; j = R[j]) {

            U[D[j]] = U[j];

            D[U[j]] = D[j];

            S[col[j]] -= 1;

        }

    }

}



void resume(int c) {

    for (int i = U[c]; i != c; i = U[i]) {

        for (int j = L[i]; j != i; j = L[j]) {

            U[D[j]] = D[U[j]] = j;

            S[col[j]] += 1;

        }

    }

    R[L[c]] = L[R[c]] = c;

}



bool dfs() {

    if (R[0] == 0)

        return true;



    int mins = INFS, c = 0;

    for (int i = R[0]; i != 0; i = R[i]) {

        if (S[i] < mins)

            mins = S[i], c = i;

    }

    remove(c);

    for (int i = D[c]; i != c; i = D[i]) {

        for (int j = R[i]; j != i; j = R[j])

            remove(col[j]);

        Q[QC++] = row[i];

        if (dfs())

            return true;

        QC -= 1;

        for (int j = L[i]; j != i; j = L[j])

            resume(col[j]);

    }

    resume(c);

    return false;

}



void solve(char ans[]) {

    QC = 0;

    dfs();

    for (int i = 0; i < QC; i++)

        ans[(Q[i]-1)/16] = (Q[i] - 1) % 16 + 'A';

}



void buildmatrix() {

    for (int i = 0; i < 16; i++) {

        for (int j = 0; j < 16; j++) {

            if (data[i][j] == '-') {

                for (int k = 1; k <= 16; k++) {

                    int r = (i * 16 + j) * 16 + k;

                    int c1 = 256 * 0 + i * 16 + k;

                    int c2 = 256 * 1 + j * 16 + k;

                    int c3 = 256 * 2 + (i / 4 * 4 + j / 4) * 16 + k;

                    int c4 = 256 * 3 + i * 16 + j + 1;

                    grid[r][c1] = grid[r][c2] = grid[r][c3] = grid[r][c4] = 1;

                }

            } else {

                int k = data[i][j] - 'A' + 1;

                int r = (i * 16 + j) * 16 + k;

                int c1 = 256 * 0 + i * 16 + k;

                int c2 = 256 * 1 + j * 16 + k;

                int c3 = 256 * 2 + (i / 4 * 4 + j / 4) * 16 + k;

                int c4 = 256 * 3 + i * 16 + j + 1;

                grid[r][c1] = grid[r][c2] = grid[r][c3] = grid[r][c4] = 1;

            }

        }

    }

}



void builddlx() {

    memset(S, 0, sizeof(S));

    for (int i = 1; i <= MAXC; i++) 

        R[i-1] = L[i+1] = U[i] = D[i] = i;

    R[MAXC] = L[1] = 0;



    int c = MAXC;

    for (int i = 1; i <= MAXR; i++) {

        int cflag = -1;

        for (int j = 1; j <= MAXC; j++) {

            if (grid[i][j] == 1) {

                c += 1;

                S[j] += 1;



                row[c] = i;

                col[c] = j;

                U[c] = U[j];

                D[c] = j;

                D[U[j]] = c;

                U[j] = c;



                if (cflag == -1) {

                    R[c] = L[c] = c;

                    cflag = c;

                } else {

                    L[c] = L[cflag];

                    R[c] = cflag;

                    R[L[c]] = c;

                    L[cflag] = c;

                }

            }

        }

    }

}



bool initdata() {

    while (scanf("%s", data[0]) != EOF)

    {

        for (int i = 1; i < 16; i++)

            scanf("%s", data[i]);



        memset(grid, 0, sizeof(grid));

        buildmatrix();

        builddlx();

        return true ;

    }

    return false;

}



int main() {

    while (initdata()) {

        char ans[300];

        solve(ans);

        for (int i = 0; i < 16; i++) {

            for (int j = 0; j < 16; j++) {

                printf("%c", ans[i*16+j]);

            }

            printf("\n");

        }

        printf("\n");

    }

    return 0;

}

3239 1077

你可能感兴趣的:(sudo)