思路:
1. 要求相邻的 2 个球数字相加为完全平方数,则相当于从 1 开始构造出来一个有向无环图:1->3->6..
2. 模型就变成了“最小路径覆盖”的问题,找图中最少的路径数,这里的路径数就是题目的柱子数。继而建模成了“二分图匹配”求最大流的问题;
3. 因为对于数字的未知性,本题采取了枚举的方法,不过每次都是在上一次最大流的基础上继续增广;
4. 代码中需要用到一个很强的剪纸:在红色部分。正常 dinic 求最大流是不需要这句话的,因为增广的时候是允许流“撤销”的,但是本题
不需要流撤销自己的错误也能达到正确的结果,仔细想想可能是因为这个有向图的原因,公共节点把图分隔开,始终都是一样的;
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 4010;
const int OFFSET = 2000;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow;
edge(int _from, int _to, int _cap, int _flow)
: from(_from), to(_to), cap(_cap), flow(_flow) {}
};
class Dinic {
public:
void addedge(int u, int v, int cap) {
edges.push_back(edge(u, v, cap, 0));
edges.push_back(edge(v, u, 0, 0));
int m = edges.size();
G[u].push_back(m - 2);
G[v].push_back(m - 1);
}
bool BFS() {
memset(vis, false, sizeof(vis));
memset(d, 0, sizeof(d));
queue<int> Q;
Q.push(s);
vis[s] = true;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow && e.cap > 0) {
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int aug) {
if (x == t || aug == 0) return aug;
int flow = 0;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (d[e.to] == d[x] + 1) {
int f = DFS(e.to, min(aug, e.cap-e.flow));
if (f == 0) continue;
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
aug -= f;
if (aug == 0) break;
}
}
return flow;
}
int maxflow(int s, int t) {
this->s = s, this->t = t;
int flow = 0;
while (BFS()) {
flow += DFS(s, INFS);
}
return flow;
}
void cleardata(int n) {
this->n = n;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
void print(int x) {
vis[x] = true;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (!vis[e.to] && e.flow == 1 && e.to != t) {
printf(" %d", e.to - OFFSET); print(e.to - OFFSET);
break;
}
}
}
void printpath(int num) {
memset(vis, false, sizeof(vis));
for (int x = 1; x <= num; x++) {
if (!vis[x]) {
printf("%d", x); print(x); printf("\n");
}
}
}
private:
vector<edge> edges;
vector<int> G[MAXN];
int d[MAXN], s, t, n;
bool vis[MAXN];
};
Dinic dc;
bool issquare[MAXN];
void initdata() {
memset(issquare, false, sizeof(issquare));
for (int i = 1; i <= 60; i++)
issquare[i*i] = true;
}
int main() {
initdata();
int n;
scanf("%d", &n);
int flow = 0, num = 0;
int s = 0, t = OFFSET*2 + 1;
dc.cleardata(t + 1);
while (num - flow <= n) {
num += 1;
dc.addedge(s, num, 1);
dc.addedge(num + OFFSET, t, 1);
for (int i = 1; i < num; i++)
if (issquare[i+num])
dc.addedge(i, num + OFFSET, 1);
flow += dc.maxflow(s, t);
}
num -= 1;
dc.cleardata(t + 1);
for (int i = 1; i <= num; i++) {
dc.addedge(s, i, 1);
dc.addedge(i + OFFSET, t, 1);
for (int j = 1; j < i; j++)
if (issquare[j+i])
dc.addedge(j, i + OFFSET, 1);
}
dc.maxflow(s, t);
printf("%d\n", num);
dc.printpath(num);
return 0;
}