poj3239

题意:给出正方形棋盘边长n(最大300),要求输出一种摆放n皇后不冲突的方案。

分析:

数据范围较大,只能用构造的方法,不能用搜索。

下面用一个数列表示一种方案,第i个数表示棋盘第i行上的皇后所在的列号

n皇后问题构造法:

一、当n mod 6 != 2 且 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1        (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n        (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;...省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1        (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n    (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1            (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n        (k为奇数,n为奇数)

第二种情况可以认为是,当n为奇数时用最后一个棋子占据最后一行的最后一个位置,然后用n-1个棋子去填充n-1的棋盘,这样就转化为了相同类型且n为偶数的问题。

若k为奇数,则数列的前半部分均为奇数,否则前半部分均为偶数。

View Code
#include < iostream >
#include
< cstdio >
#include
< cstdlib >
#include
< cstring >
using namespace std;

int n;

int main()
{
// freopen("t.txt", "r", stdin);
while (scanf( " %d " , & n), n)
{
if (n % 6 != 2 && n % 6 != 3 )
{
printf(
" 2 " );
for ( int i = 4 ; i <= n; i += 2 )
printf(
" %d " , i);
for ( int i = 1 ; i <= n; i += 2 )
printf(
" %d " , i);
putchar(
' \n ' );
continue ;
}
int k = n / 2 ;
printf(
" %d " , k);
if ( ! (k & 1 ) && ! (n & 1 ))
{
for ( int i = k + 2 ; i <= n; i += 2 )
printf(
" %d " , i);
for ( int i = 2 ; i <= k - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = k + 3 ; i <= n - 1 ; i += 2 )
printf(
" %d " , i);
for ( int i = 1 ; i <= k + 1 ; i += 2 )
printf(
" %d " , i);
}
else if ( ! (k & 1 ) && (n & 1 ))
{
for ( int i = k + 2 ; i <= n - 1 ; i += 2 )
printf(
" %d " , i);
for ( int i = 2 ; i <= k - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = k + 3 ; i <= n - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = 1 ; i <= k + 1 ; i += 2 )
printf(
" %d " , i);
printf(
" %d " , n);
}
else if ((k & 1 ) && ! (n & 1 ))
{
for ( int i = k + 2 ; i <= n - 1 ; i += 2 )
printf(
" %d " , i);
for ( int i = 1 ; i <= k - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = k + 3 ; i <= n; i += 2 )
printf(
" %d " , i);
for ( int i = 2 ; i <= k + 1 ; i += 2 )
printf(
" %d " , i);
}
else if ((k & 1 ) && (n & 1 ))
{
for ( int i = k + 2 ; i <= n - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = 1 ; i <= k - 2 ; i += 2 )
printf(
" %d " , i);
for ( int i = k + 3 ; i <= n - 1 ; i += 2 )
printf(
" %d " , i);
for ( int i = 2 ; i <= k + 1 ; i += 2 )
printf(
" %d " , i);
printf(
" %d " , n);
}
putchar(
' \n ' );
}
return 0 ;
}

 

你可能感兴趣的:(poj)