最小生成树问题,kruskal算法的变形。
代码如下:
#include<stdio.h> #include<math.h> #include<stdlib.h> #define MAXN1 500+10 #define MAXN 3000000 int z, n, s, m, x[MAXN1], y[MAXN1], u[MAXN], v[MAXN], p[MAXN1], r[MAXN]; double w[MAXN], flag[MAXN]; int cmp(const void *_p, const void *_q) { int *p = (int *)_p; int *q = (int *)_q; return w[*p] > w[*q] ? 1: -1; } int find(int o) {return p[o] == o ? o : p[o] = find(p[o]);} double kruskal() { int q = 0; for(int i = 0; i <= m; i ++) p[i] = i; for(int i = 0; i <= z; i ++) r[i] = i; qsort(r, z, sizeof(r[0]), cmp); for(int i = 0; i < z; i ++) { int e = r[i]; int x1 = find(u[e]); int y1 = find(v[e]); if(x1 != y1) { p[x1] = y1;flag[q++] = w[e];} } return flag[q-s]; } void init() { while(~scanf("%d",&n)) while(n --) { scanf("%d%d",&s,&m); for(int i = 1; i <= m; i ++) scanf("%d%d",&x[i],&y[i]); z = 0; for(int i = 1; i <= m; i ++) for(int j = i+1; j <= m; j ++) { u[z] = i; v[z] = j; w[z++] = sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])); } printf("%.2lf\n",kruskal()); } } int main() { init(); return 0; }