【原创】Google的文本内容对比代码

/*

 * Diff Match and Patch

 *

 * Copyright 2006 Google Inc.

 * http://code.google.com/p/google-diff-match-patch/

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 *   http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */





import java.io.UnsupportedEncodingException;

import java.net.URLDecoder;

import java.net.URLEncoder;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.ListIterator;

import java.util.Map;

import java.util.Stack;

import java.util.regex.Matcher;

import java.util.regex.Pattern;





/*

 * Functions for diff, match and patch.

 * Computes the difference between two texts to create a patch.

 * Applies the patch onto another text, allowing for errors.

 *

 * @author [email protected] (Neil Fraser)

 */



/**

 * Class containing the diff, match and patch methods.

 * Also contains the behaviour settings.

 */

public class FindDiff {



  // Defaults.

  // Set these on your diff_match_patch instance to override the defaults.



  /**

   * Number of seconds to map a diff before giving up (0 for infinity).

   */

  public float Diff_Timeout = 1.0f;

  /**

   * Cost of an empty edit operation in terms of edit characters.

   */

  public short Diff_EditCost = 4;

  /**

   * At what point is no match declared (0.0 = perfection, 1.0 = very loose).

   */

  public float Match_Threshold = 0.5f;

  /**

   * How far to search for a match (0 = exact location, 1000+ = broad match).

   * A match this many characters away from the expected location will add

   * 1.0 to the score (0.0 is a perfect match).

   */

  public int Match_Distance = 1000;

  /**

   * When deleting a large block of text (over ~64 characters), how close does

   * the contents have to match the expected contents. (0.0 = perfection,

   * 1.0 = very loose).  Note that Match_Threshold controls how closely the

   * end points of a delete need to match.

   */

  public float Patch_DeleteThreshold = 0.5f;

  /**

   * Chunk size for context length.

   */

  public short Patch_Margin = 4;



  /**

   * The number of bits in an int.

   */

  private short Match_MaxBits = 32;



  /**

   * Internal class for returning results from diff_linesToChars().

   * Other less paranoid languages just use a three-element array.

   */

  protected static class LinesToCharsResult {

    protected String chars1;

    protected String chars2;

    protected List<String> lineArray;



    protected LinesToCharsResult(String chars1, String chars2,

        List<String> lineArray) {

      this.chars1 = chars1;

      this.chars2 = chars2;

      this.lineArray = lineArray;

    }

  }





  //  DIFF FUNCTIONS





  /**

   * The data structure representing a diff is a Linked list of Diff objects:

   * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),

   *  Diff(Operation.EQUAL, " world.")}

   * which means: delete "Hello", add "Goodbye" and keep " world."

   */

  public enum Operation {

    DELETE, INSERT, EQUAL

  }





  /**

   * Find the differences between two texts.

   * Run a faster, slightly less optimal diff.

   * This method allows the 'checklines' of diff_main() to be optional.

   * Most of the time checklines is wanted, so default to true.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @return Linked List of Diff objects.

   */

  public LinkedList<Diff> diff_main(String text1, String text2) {

    return diff_main(text1, text2, true);

  }



  /**

   * Find the differences between two texts.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param checklines Speedup flag.  If false, then don't run a

   *     line-level diff first to identify the changed areas.

   *     If true, then run a faster slightly less optimal diff.

   * @return Linked List of Diff objects.

   */

  public LinkedList<Diff> diff_main(String text1, String text2,

                                    boolean checklines) {

    // Set a deadline by which time the diff must be complete.

    long deadline;

    if (Diff_Timeout <= 0) {

      deadline = Long.MAX_VALUE;

    } else {

      deadline = System.currentTimeMillis() + (long) (Diff_Timeout * 1000);

    }

    return diff_main(text1, text2, checklines, deadline);

  }

public String getFilterString(String first,String second){

    StringBuffer sbf=new StringBuffer("以下是通稿后的内容(红色为删除的内容,绿色为保留的内容,蓝色为新增内容):<br>");

      LinkedList list=diff_main(first, second);

      for(int i=0;i<list.size();i++){

          Diff d=(Diff) list.get(i);

          if(d.operation.toString().equals("EQUAL")){

              sbf.append("<font color=\"green\">").append(d.text).append("<font>");

          }

          if(d.operation.toString().equals("DELETE")){

              sbf.append("<s><font color=\"red\">").append(d.text).append("</font></s>");

          }

          if(d.operation.toString().equals("INSERT")){

              sbf.append("<u><font color=\"blue\">").append(d.text).append("</blue></u>");

          }

      }

      return sbf.toString();

}



  /**

   * Find the differences between two texts.  Simplifies the problem by

   * stripping any common prefix or suffix off the texts before diffing.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param checklines Speedup flag.  If false, then don't run a

   *     line-level diff first to identify the changed areas.

   *     If true, then run a faster slightly less optimal diff.

   * @param deadline Time when the diff should be complete by.  Used

   *     internally for recursive calls.  Users should set DiffTimeout instead.

   * @return Linked List of Diff objects.

   */

  private LinkedList<Diff> diff_main(String text1, String text2,

                                     boolean checklines, long deadline) {

    // Check for null inputs.

    if (text1 == null || text2 == null) {

      throw new IllegalArgumentException("Null inputs. (diff_main)");

    }



    // Check for equality (speedup).

    LinkedList<Diff> diffs;

    if (text1.equals(text2)) {

      diffs = new LinkedList<Diff>();

      if (text1.length() != 0) {

        diffs.add(new Diff(Operation.EQUAL, text1));

      }

      return diffs;

    }



    // Trim off common prefix (speedup).

    int commonlength = diff_commonPrefix(text1, text2);

    String commonprefix = text1.substring(0, commonlength);

    text1 = text1.substring(commonlength);

    text2 = text2.substring(commonlength);



    // Trim off common suffix (speedup).

    commonlength = diff_commonSuffix(text1, text2);

    String commonsuffix = text1.substring(text1.length() - commonlength);

    text1 = text1.substring(0, text1.length() - commonlength);

    text2 = text2.substring(0, text2.length() - commonlength);



    // Compute the diff on the middle block.

    diffs = diff_compute(text1, text2, checklines, deadline);



    // Restore the prefix and suffix.

    if (commonprefix.length() != 0) {

      diffs.addFirst(new Diff(Operation.EQUAL, commonprefix));

    }

    if (commonsuffix.length() != 0) {

      diffs.addLast(new Diff(Operation.EQUAL, commonsuffix));

    }



    diff_cleanupMerge(diffs);

    return diffs;

  }





  /**

   * Find the differences between two texts.  Assumes that the texts do not

   * have any common prefix or suffix.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param checklines Speedup flag.  If false, then don't run a

   *     line-level diff first to identify the changed areas.

   *     If true, then run a faster slightly less optimal diff.

   * @param deadline Time when the diff should be complete by.

   * @return Linked List of Diff objects.

   */

  private LinkedList<Diff> diff_compute(String text1, String text2,

                                        boolean checklines, long deadline) {

    LinkedList<Diff> diffs = new LinkedList<Diff>();



    if (text1.length() == 0) {

      // Just add some text (speedup).

      diffs.add(new Diff(Operation.INSERT, text2));

      return diffs;

    }



    if (text2.length() == 0) {

      // Just delete some text (speedup).

      diffs.add(new Diff(Operation.DELETE, text1));

      return diffs;

    }



    String longtext = text1.length() > text2.length() ? text1 : text2;

    String shorttext = text1.length() > text2.length() ? text2 : text1;

    int i = longtext.indexOf(shorttext);

    if (i != -1) {

      // Shorter text is inside the longer text (speedup).

      Operation op = (text1.length() > text2.length()) ?

                     Operation.DELETE : Operation.INSERT;

      diffs.add(new Diff(op, longtext.substring(0, i)));

      diffs.add(new Diff(Operation.EQUAL, shorttext));

      diffs.add(new Diff(op, longtext.substring(i + shorttext.length())));

      return diffs;

    }



    if (shorttext.length() == 1) {

      // Single character string.

      // After the previous speedup, the character can't be an equality.

      diffs.add(new Diff(Operation.DELETE, text1));

      diffs.add(new Diff(Operation.INSERT, text2));

      return diffs;

    }

    longtext = shorttext = null;  // Garbage collect.



    // Check to see if the problem can be split in two.

    String[] hm = diff_halfMatch(text1, text2);

    if (hm != null) {

      // A half-match was found, sort out the return data.

      String text1_a = hm[0];

      String text1_b = hm[1];

      String text2_a = hm[2];

      String text2_b = hm[3];

      String mid_common = hm[4];

      // Send both pairs off for separate processing.

      LinkedList<Diff> diffs_a = diff_main(text1_a, text2_a,

                                           checklines, deadline);

      LinkedList<Diff> diffs_b = diff_main(text1_b, text2_b,

                                           checklines, deadline);

      // Merge the results.

      diffs = diffs_a;

      diffs.add(new Diff(Operation.EQUAL, mid_common));

      diffs.addAll(diffs_b);

      return diffs;

    }



    if (checklines && text1.length() > 100 && text2.length() > 100) {

      return diff_lineMode(text1, text2, deadline);

    }



    return diff_bisect(text1, text2, deadline);

  }

  

  /**

   * Do a quick line-level diff on both strings, then rediff the parts for

   * greater accuracy.

   * This speedup can produce non-minimal diffs.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param deadline Time when the diff should be complete by.

   * @return Linked List of Diff objects.

   */

  private LinkedList<Diff> diff_lineMode(String text1, String text2,

                                         long deadline) {

    // Scan the text on a line-by-line basis first.

    LinesToCharsResult b = diff_linesToChars(text1, text2);

    text1 = b.chars1;

    text2 = b.chars2;

    List<String> linearray = b.lineArray;



    LinkedList<Diff> diffs = diff_main(text1, text2, false, deadline);



    // Convert the diff back to original text.

    diff_charsToLines(diffs, linearray);

    // Eliminate freak matches (e.g. blank lines)

    diff_cleanupSemantic(diffs);



    // Rediff any replacement blocks, this time character-by-character.

    // Add a dummy entry at the end.

    diffs.add(new Diff(Operation.EQUAL, ""));

    int count_delete = 0;

    int count_insert = 0;

    String text_delete = "";

    String text_insert = "";

    ListIterator<Diff> pointer = diffs.listIterator();

    Diff thisDiff = pointer.next();

    while (thisDiff != null) {

      switch (thisDiff.operation) {

      case INSERT:

        count_insert++;

        text_insert += thisDiff.text;

        break;

      case DELETE:

        count_delete++;

        text_delete += thisDiff.text;

        break;

      case EQUAL:

        // Upon reaching an equality, check for prior redundancies.

        if (count_delete >= 1 && count_insert >= 1) {

          // Delete the offending records and add the merged ones.

          pointer.previous();

          for (int j = 0; j < count_delete + count_insert; j++) {

            pointer.previous();

            pointer.remove();

          }

          for (Diff newDiff : diff_main(text_delete, text_insert, false,

              deadline)) {

            pointer.add(newDiff);

          }

        }

        count_insert = 0;

        count_delete = 0;

        text_delete = "";

        text_insert = "";

        break;

      }

      thisDiff = pointer.hasNext() ? pointer.next() : null;

    }

    diffs.removeLast();  // Remove the dummy entry at the end.



    return diffs;

  }





  /**

   * Find the 'middle snake' of a diff, split the problem in two

   * and return the recursively constructed diff.

   * See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param deadline Time at which to bail if not yet complete.

   * @return LinkedList of Diff objects.

   */

  protected LinkedList<Diff> diff_bisect(String text1, String text2,

      long deadline) {

    // Cache the text lengths to prevent multiple calls.

    int text1_length = text1.length();

    int text2_length = text2.length();

    int max_d = (text1_length + text2_length + 1) / 2;

    int v_offset = max_d;

    int v_length = 2 * max_d;

    int[] v1 = new int[v_length];

    int[] v2 = new int[v_length];

    for (int x = 0; x < v_length; x++) {

      v1[x] = -1;

      v2[x] = -1;

    }

    v1[v_offset + 1] = 0;

    v2[v_offset + 1] = 0;

    int delta = text1_length - text2_length;

    // If the total number of characters is odd, then the front path will

    // collide with the reverse path.

    boolean front = (delta % 2 != 0);

    // Offsets for start and end of k loop.

    // Prevents mapping of space beyond the grid.

    int k1start = 0;

    int k1end = 0;

    int k2start = 0;

    int k2end = 0;

    for (int d = 0; d < max_d; d++) {

      // Bail out if deadline is reached.

      if (System.currentTimeMillis() > deadline) {

        break;

      }



      // Walk the front path one step.

      for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) {

        int k1_offset = v_offset + k1;

        int x1;

        if (k1 == -d || k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1]) {

          x1 = v1[k1_offset + 1];

        } else {

          x1 = v1[k1_offset - 1] + 1;

        }

        int y1 = x1 - k1;

        while (x1 < text1_length && y1 < text2_length

               && text1.charAt(x1) == text2.charAt(y1)) {

          x1++;

          y1++;

        }

        v1[k1_offset] = x1;

        if (x1 > text1_length) {

          // Ran off the right of the graph.

          k1end += 2;

        } else if (y1 > text2_length) {

          // Ran off the bottom of the graph.

          k1start += 2;

        } else if (front) {

          int k2_offset = v_offset + delta - k1;

          if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) {

            // Mirror x2 onto top-left coordinate system.

            int x2 = text1_length - v2[k2_offset];

            if (x1 >= x2) {

              // Overlap detected.

              return diff_bisectSplit(text1, text2, x1, y1, deadline);

            }

          }

        }

      }



      // Walk the reverse path one step.

      for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) {

        int k2_offset = v_offset + k2;

        int x2;

        if (k2 == -d || k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1]) {

          x2 = v2[k2_offset + 1];

        } else {

          x2 = v2[k2_offset - 1] + 1;

        }

        int y2 = x2 - k2;

        while (x2 < text1_length && y2 < text2_length

               && text1.charAt(text1_length - x2 - 1)

               == text2.charAt(text2_length - y2 - 1)) {

          x2++;

          y2++;

        }

        v2[k2_offset] = x2;

        if (x2 > text1_length) {

          // Ran off the left of the graph.

          k2end += 2;

        } else if (y2 > text2_length) {

          // Ran off the top of the graph.

          k2start += 2;

        } else if (!front) {

          int k1_offset = v_offset + delta - k2;

          if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) {

            int x1 = v1[k1_offset];

            int y1 = v_offset + x1 - k1_offset;

            // Mirror x2 onto top-left coordinate system.

            x2 = text1_length - x2;

            if (x1 >= x2) {

              // Overlap detected.

              return diff_bisectSplit(text1, text2, x1, y1, deadline);

            }

          }

        }

      }

    }

    // Diff took too long and hit the deadline or

    // number of diffs equals number of characters, no commonality at all.

    LinkedList<Diff> diffs = new LinkedList<Diff>();

    diffs.add(new Diff(Operation.DELETE, text1));

    diffs.add(new Diff(Operation.INSERT, text2));

    return diffs;

  }





  /**

   * Given the location of the 'middle snake', split the diff in two parts

   * and recurse.

   * @param text1 Old string to be diffed.

   * @param text2 New string to be diffed.

   * @param x Index of split point in text1.

   * @param y Index of split point in text2.

   * @param deadline Time at which to bail if not yet complete.

   * @return LinkedList of Diff objects.

   */

  private LinkedList<Diff> diff_bisectSplit(String text1, String text2,

                                            int x, int y, long deadline) {

    String text1a = text1.substring(0, x);

    String text2a = text2.substring(0, y);

    String text1b = text1.substring(x);

    String text2b = text2.substring(y);



    // Compute both diffs serially.

    LinkedList<Diff> diffs = diff_main(text1a, text2a, false, deadline);

    LinkedList<Diff> diffsb = diff_main(text1b, text2b, false, deadline);



    diffs.addAll(diffsb);

    return diffs;  

  }



  

  /**

   * Split two texts into a list of strings.  Reduce the texts to a string of

   * hashes where each Unicode character represents one line.

   * @param text1 First string.

   * @param text2 Second string.

   * @return An object containing the encoded text1, the encoded text2 and

   *     the List of unique strings.  The zeroth element of the List of

   *     unique strings is intentionally blank.

   */

  protected LinesToCharsResult diff_linesToChars(String text1, String text2) {

    List<String> lineArray = new ArrayList<String>();

    Map<String, Integer> lineHash = new HashMap<String, Integer>();

    // e.g. linearray[4] == "Hello\n"

    // e.g. linehash.get("Hello\n") == 4



    // "\x00" is a valid character, but various debuggers don't like it.

    // So we'll insert a junk entry to avoid generating a null character.

    lineArray.add("");



    String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash);

    String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash);

    return new LinesToCharsResult(chars1, chars2, lineArray);

  }





  /**

   * Split a text into a list of strings.  Reduce the texts to a string of

   * hashes where each Unicode character represents one line.

   * @param text String to encode.

   * @param lineArray List of unique strings.

   * @param lineHash Map of strings to indices.

   * @return Encoded string.

   */

  private String diff_linesToCharsMunge(String text, List<String> lineArray,

                                        Map<String, Integer> lineHash) {

    int lineStart = 0;

    int lineEnd = -1;

    String line;

    StringBuilder chars = new StringBuilder();

    // Walk the text, pulling out a substring for each line.

    // text.split('\n') would would temporarily double our memory footprint.

    // Modifying text would create many large strings to garbage collect.

    while (lineEnd < text.length() - 1) {

      lineEnd = text.indexOf('\n', lineStart);

      if (lineEnd == -1) {

        lineEnd = text.length() - 1;

      }

      line = text.substring(lineStart, lineEnd + 1);

      lineStart = lineEnd + 1;



      if (lineHash.containsKey(line)) {

        chars.append(String.valueOf((char) (int) lineHash.get(line)));

      } else {

        lineArray.add(line);

        lineHash.put(line, lineArray.size() - 1);

        chars.append(String.valueOf((char) (lineArray.size() - 1)));

      }

    }

    return chars.toString();

  }





  /**

   * Rehydrate the text in a diff from a string of line hashes to real lines of

   * text.

   * @param diffs LinkedList of Diff objects.

   * @param lineArray List of unique strings.

   */

  protected void diff_charsToLines(LinkedList<Diff> diffs,

                                  List<String> lineArray) {

    StringBuilder text;

    for (Diff diff : diffs) {

      text = new StringBuilder();

      for (int y = 0; y < diff.text.length(); y++) {

        text.append(lineArray.get(diff.text.charAt(y)));

      }

      diff.text = text.toString();

    }

  }





  /**

   * Determine the common prefix of two strings

   * @param text1 First string.

   * @param text2 Second string.

   * @return The number of characters common to the start of each string.

   */

  public int diff_commonPrefix(String text1, String text2) {

    // Performance analysis: http://neil.fraser.name/news/2007/10/09/

    int n = Math.min(text1.length(), text2.length());

    for (int i = 0; i < n; i++) {

      if (text1.charAt(i) != text2.charAt(i)) {

        return i;

      }

    }

    return n;

  }





  /**

   * Determine the common suffix of two strings

   * @param text1 First string.

   * @param text2 Second string.

   * @return The number of characters common to the end of each string.

   */

  public int diff_commonSuffix(String text1, String text2) {

    // Performance analysis: http://neil.fraser.name/news/2007/10/09/

    int text1_length = text1.length();

    int text2_length = text2.length();

    int n = Math.min(text1_length, text2_length);

    for (int i = 1; i <= n; i++) {

      if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) {

        return i - 1;

      }

    }

    return n;

  }





  /**

   * Determine if the suffix of one string is the prefix of another.

   * @param text1 First string.

   * @param text2 Second string.

   * @return The number of characters common to the end of the first

   *     string and the start of the second string.

   */

  protected int diff_commonOverlap(String text1, String text2) {

    // Cache the text lengths to prevent multiple calls.

    int text1_length = text1.length();

    int text2_length = text2.length();

    // Eliminate the null case.

    if (text1_length == 0 || text2_length == 0) {

      return 0;

    }

    // Truncate the longer string.

    if (text1_length > text2_length) {

      text1 = text1.substring(text1_length - text2_length);

    } else if (text1_length < text2_length) {

      text2 = text2.substring(0, text1_length);

    }

    int text_length = Math.min(text1_length, text2_length);

    // Quick check for the worst case.

    if (text1.equals(text2)) {

      return text_length;

    }



    // Start by looking for a single character match

    // and increase length until no match is found.

    // Performance analysis: http://neil.fraser.name/news/2010/11/04/

    int best = 0;

    int length = 1;

    while (true) {

      String pattern = text1.substring(text_length - length);

      int found = text2.indexOf(pattern);

      if (found == -1) {

        return best;

      }

      length += found;

      if (found == 0 || text1.substring(text_length - length).equals(

          text2.substring(0, length))) {

        best = length;

        length++;

      }

    }

  }





  /**

   * Do the two texts share a substring which is at least half the length of

   * the longer text?

   * This speedup can produce non-minimal diffs.

   * @param text1 First string.

   * @param text2 Second string.

   * @return Five element String array, containing the prefix of text1, the

   *     suffix of text1, the prefix of text2, the suffix of text2 and the

   *     common middle.  Or null if there was no match.

   */

  protected String[] diff_halfMatch(String text1, String text2) {

    if (Diff_Timeout <= 0) {

      // Don't risk returning a non-optimal diff if we have unlimited time.

      return null;

    }

    String longtext = text1.length() > text2.length() ? text1 : text2;

    String shorttext = text1.length() > text2.length() ? text2 : text1;

    if (longtext.length() < 4 || shorttext.length() * 2 < longtext.length()) {

      return null;  // Pointless.

    }



    // First check if the second quarter is the seed for a half-match.

    String[] hm1 = diff_halfMatchI(longtext, shorttext,

                                   (longtext.length() + 3) / 4);

    // Check again based on the third quarter.

    String[] hm2 = diff_halfMatchI(longtext, shorttext,

                                   (longtext.length() + 1) / 2);

    String[] hm;

    if (hm1 == null && hm2 == null) {

      return null;

    } else if (hm2 == null) {

      hm = hm1;

    } else if (hm1 == null) {

      hm = hm2;

    } else {

      // Both matched.  Select the longest.

      hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2;

    }



    // A half-match was found, sort out the return data.

    if (text1.length() > text2.length()) {

      return hm;

      //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};

    } else {

      return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]};

    }

  }





  /**

   * Does a substring of shorttext exist within longtext such that the

   * substring is at least half the length of longtext?

   * @param longtext Longer string.

   * @param shorttext Shorter string.

   * @param i Start index of quarter length substring within longtext.

   * @return Five element String array, containing the prefix of longtext, the

   *     suffix of longtext, the prefix of shorttext, the suffix of shorttext

   *     and the common middle.  Or null if there was no match.

   */

  private String[] diff_halfMatchI(String longtext, String shorttext, int i) {

    // Start with a 1/4 length substring at position i as a seed.

    String seed = longtext.substring(i, i + longtext.length() / 4);

    int j = -1;

    String best_common = "";

    String best_longtext_a = "", best_longtext_b = "";

    String best_shorttext_a = "", best_shorttext_b = "";

    while ((j = shorttext.indexOf(seed, j + 1)) != -1) {

      int prefixLength = diff_commonPrefix(longtext.substring(i),

                                           shorttext.substring(j));

      int suffixLength = diff_commonSuffix(longtext.substring(0, i),

                                           shorttext.substring(0, j));

      if (best_common.length() < suffixLength + prefixLength) {

        best_common = shorttext.substring(j - suffixLength, j)

            + shorttext.substring(j, j + prefixLength);

        best_longtext_a = longtext.substring(0, i - suffixLength);

        best_longtext_b = longtext.substring(i + prefixLength);

        best_shorttext_a = shorttext.substring(0, j - suffixLength);

        best_shorttext_b = shorttext.substring(j + prefixLength);

      }

    }

    if (best_common.length() * 2 >= longtext.length()) {

      return new String[]{best_longtext_a, best_longtext_b,

                          best_shorttext_a, best_shorttext_b, best_common};

    } else {

      return null;

    }

  }





  /**

   * Reduce the number of edits by eliminating semantically trivial equalities.

   * @param diffs LinkedList of Diff objects.

   */

  public void diff_cleanupSemantic(LinkedList<Diff> diffs) {

    if (diffs.isEmpty()) {

      return;

    }

    boolean changes = false;

    Stack<Diff> equalities = new Stack<Diff>();  // Stack of qualities.

    String lastequality = null; // Always equal to equalities.lastElement().text

    ListIterator<Diff> pointer = diffs.listIterator();

    // Number of characters that changed prior to the equality.

    int length_insertions1 = 0;

    int length_deletions1 = 0;

    // Number of characters that changed after the equality.

    int length_insertions2 = 0;

    int length_deletions2 = 0;

    Diff thisDiff = pointer.next();

    while (thisDiff != null) {

      if (thisDiff.operation == Operation.EQUAL) {

        // Equality found.

        equalities.push(thisDiff);

        length_insertions1 = length_insertions2;

        length_deletions1 = length_deletions2;

        length_insertions2 = 0;

        length_deletions2 = 0;

        lastequality = thisDiff.text;

      } else {

        // An insertion or deletion.

        if (thisDiff.operation == Operation.INSERT) {

          length_insertions2 += thisDiff.text.length();

        } else {

          length_deletions2 += thisDiff.text.length();

        }

        if (lastequality != null && (lastequality.length()

            <= Math.max(length_insertions1, length_deletions1))

            && (lastequality.length()

                <= Math.max(length_insertions2, length_deletions2))) {

          //System.out.println("Splitting: '" + lastequality + "'");

          // Walk back to offending equality.

          while (thisDiff != equalities.lastElement()) {

            thisDiff = pointer.previous();

          }

          pointer.next();



          // Replace equality with a delete.

          pointer.set(new Diff(Operation.DELETE, lastequality));

          // Insert a corresponding an insert.

          pointer.add(new Diff(Operation.INSERT, lastequality));



          equalities.pop();  // Throw away the equality we just deleted.

          if (!equalities.empty()) {

            // Throw away the previous equality (it needs to be reevaluated).

            equalities.pop();

          }

          if (equalities.empty()) {

            // There are no previous equalities, walk back to the start.

            while (pointer.hasPrevious()) {

              pointer.previous();

            }

          } else {

            // There is a safe equality we can fall back to.

            thisDiff = equalities.lastElement();

            while (thisDiff != pointer.previous()) {

              // Intentionally empty loop.

            }

          }



          length_insertions1 = 0;  // Reset the counters.

          length_insertions2 = 0;

          length_deletions1 = 0;

          length_deletions2 = 0;

          lastequality = null;

          changes = true;

        }

      }

      thisDiff = pointer.hasNext() ? pointer.next() : null;

    }



    // Normalize the diff.

    if (changes) {

      diff_cleanupMerge(diffs);

    }

    diff_cleanupSemanticLossless(diffs);



    // Find any overlaps between deletions and insertions.

    // e.g: <del>abcxx</del><ins>xxdef</ins>

    //   -> <del>abc</del>xx<ins>def</ins>

    pointer = diffs.listIterator();

    Diff prevDiff = null;

    thisDiff = null;

    if (pointer.hasNext()) {

      prevDiff = pointer.next();

      if (pointer.hasNext()) {

        thisDiff = pointer.next();

      }

    }

    while (thisDiff != null) {

      if (prevDiff.operation == Operation.DELETE &&

          thisDiff.operation == Operation.INSERT) {

        String deletion = prevDiff.text;

        String insertion = thisDiff.text;

        int overlap_length = this.diff_commonOverlap(deletion, insertion);

        if (overlap_length != 0) {

          // Overlap found.  Insert an equality and trim the surrounding edits.

          pointer.previous();

          pointer.add(new Diff(Operation.EQUAL,

                               insertion.substring(0, overlap_length)));

          prevDiff.text =

              deletion.substring(0, deletion.length() - overlap_length);

          thisDiff.text = insertion.substring(overlap_length);

          // pointer.add inserts the element before the cursor, so there is

          // no need to step past the new element.

        }

        thisDiff = pointer.hasNext() ? pointer.next() : null;

      }

      prevDiff = thisDiff;

      thisDiff = pointer.hasNext() ? pointer.next() : null;

    }

  }





  /**

   * Look for single edits surrounded on both sides by equalities

   * which can be shifted sideways to align the edit to a word boundary.

   * e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.

   * @param diffs LinkedList of Diff objects.

   */

  public void diff_cleanupSemanticLossless(LinkedList<Diff> diffs) {

    String equality1, edit, equality2;

    String commonString;

    int commonOffset;

    int score, bestScore;

    String bestEquality1, bestEdit, bestEquality2;

    // Create a new iterator at the start.

    ListIterator<Diff> pointer = diffs.listIterator();

    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;

    Diff thisDiff = pointer.hasNext() ? pointer.next() : null;

    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;

    // Intentionally ignore the first and last element (don't need checking).

    while (nextDiff != null) {

      if (prevDiff.operation == Operation.EQUAL &&

          nextDiff.operation == Operation.EQUAL) {

        // This is a single edit surrounded by equalities.

        equality1 = prevDiff.text;

        edit = thisDiff.text;

        equality2 = nextDiff.text;



        // First, shift the edit as far left as possible.

        commonOffset = diff_commonSuffix(equality1, edit);

        if (commonOffset != 0) {

          commonString = edit.substring(edit.length() - commonOffset);

          equality1 = equality1.substring(0, equality1.length() - commonOffset);

          edit = commonString + edit.substring(0, edit.length() - commonOffset);

          equality2 = commonString + equality2;

        }



        // Second, step character by character right, looking for the best fit.

        bestEquality1 = equality1;

        bestEdit = edit;

        bestEquality2 = equality2;

        bestScore = diff_cleanupSemanticScore(equality1, edit)

            + diff_cleanupSemanticScore(edit, equality2);

        while (edit.length() != 0 && equality2.length() != 0

            && edit.charAt(0) == equality2.charAt(0)) {

          equality1 += edit.charAt(0);

          edit = edit.substring(1) + equality2.charAt(0);

          equality2 = equality2.substring(1);

          score = diff_cleanupSemanticScore(equality1, edit)

              + diff_cleanupSemanticScore(edit, equality2);

          // The >= encourages trailing rather than leading whitespace on edits.

          if (score >= bestScore) {

            bestScore = score;

            bestEquality1 = equality1;

            bestEdit = edit;

            bestEquality2 = equality2;

          }

        }



        if (!prevDiff.text.equals(bestEquality1)) {

          // We have an improvement, save it back to the diff.

          if (bestEquality1.length() != 0) {

            prevDiff.text = bestEquality1;

          } else {

            pointer.previous(); // Walk past nextDiff.

            pointer.previous(); // Walk past thisDiff.

            pointer.previous(); // Walk past prevDiff.

            pointer.remove(); // Delete prevDiff.

            pointer.next(); // Walk past thisDiff.

            pointer.next(); // Walk past nextDiff.

          }

          thisDiff.text = bestEdit;

          if (bestEquality2.length() != 0) {

            nextDiff.text = bestEquality2;

          } else {

            pointer.remove(); // Delete nextDiff.

            nextDiff = thisDiff;

            thisDiff = prevDiff;

          }

        }

      }

      prevDiff = thisDiff;

      thisDiff = nextDiff;

      nextDiff = pointer.hasNext() ? pointer.next() : null;

    }

  }





  /**

   * Given two strings, compute a score representing whether the internal

   * boundary falls on logical boundaries.

   * Scores range from 5 (best) to 0 (worst).

   * @param one First string.

   * @param two Second string.

   * @return The score.

   */

  private int diff_cleanupSemanticScore(String one, String two) {

    if (one.length() == 0 || two.length() == 0) {

      // Edges are the best.

      return 5;

    }



    // Each port of this function behaves slightly differently due to

    // subtle differences in each language's definition of things like

    // 'whitespace'.  Since this function's purpose is largely cosmetic,

    // the choice has been made to use each language's native features

    // rather than force total conformity.

    int score = 0;

    // One point for non-alphanumeric.

    if (!Character.isLetterOrDigit(one.charAt(one.length() - 1))

        || !Character.isLetterOrDigit(two.charAt(0))) {

      score++;

      // Two points for whitespace.

      if (Character.isWhitespace(one.charAt(one.length() - 1))

          || Character.isWhitespace(two.charAt(0))) {

        score++;

        // Three points for line breaks.

        if (Character.getType(one.charAt(one.length() - 1)) == Character.CONTROL

            || Character.getType(two.charAt(0)) == Character.CONTROL) {

          score++;

          // Four points for blank lines.

          if (BLANKLINEEND.matcher(one).find()

              || BLANKLINESTART.matcher(two).find()) {

            score++;

          }

        }

      }

    }

    return score;

  }





  private Pattern BLANKLINEEND

      = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL);

  private Pattern BLANKLINESTART

      = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL);





  /**

   * Reduce the number of edits by eliminating operationally trivial equalities.

   * @param diffs LinkedList of Diff objects.

   */

  public void diff_cleanupEfficiency(LinkedList<Diff> diffs) {

    if (diffs.isEmpty()) {

      return;

    }

    boolean changes = false;

    Stack<Diff> equalities = new Stack<Diff>();  // Stack of equalities.

    String lastequality = null; // Always equal to equalities.lastElement().text

    ListIterator<Diff> pointer = diffs.listIterator();

    // Is there an insertion operation before the last equality.

    boolean pre_ins = false;

    // Is there a deletion operation before the last equality.

    boolean pre_del = false;

    // Is there an insertion operation after the last equality.

    boolean post_ins = false;

    // Is there a deletion operation after the last equality.

    boolean post_del = false;

    Diff thisDiff = pointer.next();

    Diff safeDiff = thisDiff;  // The last Diff that is known to be unsplitable.

    while (thisDiff != null) {

      if (thisDiff.operation == Operation.EQUAL) {

        // Equality found.

        if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) {

          // Candidate found.

          equalities.push(thisDiff);

          pre_ins = post_ins;

          pre_del = post_del;

          lastequality = thisDiff.text;

        } else {

          // Not a candidate, and can never become one.

          equalities.clear();

          lastequality = null;

          safeDiff = thisDiff;

        }

        post_ins = post_del = false;

      } else {

        // An insertion or deletion.

        if (thisDiff.operation == Operation.DELETE) {

          post_del = true;

        } else {

          post_ins = true;

        }

        /*

         * Five types to be split:

         * <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del>

         * <ins>A</ins>X<ins>C</ins><del>D</del>

         * <ins>A</ins><del>B</del>X<ins>C</ins>

         * <ins>A</del>X<ins>C</ins><del>D</del>

         * <ins>A</ins><del>B</del>X<del>C</del>

         */

        if (lastequality != null

            && ((pre_ins && pre_del && post_ins && post_del)

                || ((lastequality.length() < Diff_EditCost / 2)

                    && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0)

                        + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {

          //System.out.println("Splitting: '" + lastequality + "'");

          // Walk back to offending equality.

          while (thisDiff != equalities.lastElement()) {

            thisDiff = pointer.previous();

          }

          pointer.next();



          // Replace equality with a delete.

          pointer.set(new Diff(Operation.DELETE, lastequality));

          // Insert a corresponding an insert.

          pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality));



          equalities.pop();  // Throw away the equality we just deleted.

          lastequality = null;

          if (pre_ins && pre_del) {

            // No changes made which could affect previous entry, keep going.

            post_ins = post_del = true;

            equalities.clear();

            safeDiff = thisDiff;

          } else {

            if (!equalities.empty()) {

              // Throw away the previous equality (it needs to be reevaluated).

              equalities.pop();

            }

            if (equalities.empty()) {

              // There are no previous questionable equalities,

              // walk back to the last known safe diff.

              thisDiff = safeDiff;

            } else {

              // There is an equality we can fall back to.

              thisDiff = equalities.lastElement();

            }

            while (thisDiff != pointer.previous()) {

              // Intentionally empty loop.

            }

            post_ins = post_del = false;

          }



          changes = true;

        }

      }

      thisDiff = pointer.hasNext() ? pointer.next() : null;

    }



    if (changes) {

      diff_cleanupMerge(diffs);

    }

  }





  /**

   * Reorder and merge like edit sections.  Merge equalities.

   * Any edit section can move as long as it doesn't cross an equality.

   * @param diffs LinkedList of Diff objects.

   */

  public void diff_cleanupMerge(LinkedList<Diff> diffs) {

    diffs.add(new Diff(Operation.EQUAL, ""));  // Add a dummy entry at the end.

    ListIterator<Diff> pointer = diffs.listIterator();

    int count_delete = 0;

    int count_insert = 0;

    String text_delete = "";

    String text_insert = "";

    Diff thisDiff = pointer.next();

    Diff prevEqual = null;

    int commonlength;

    while (thisDiff != null) {

      switch (thisDiff.operation) {

      case INSERT:

        count_insert++;

        text_insert += thisDiff.text;

        prevEqual = null;

        break;

      case DELETE:

        count_delete++;

        text_delete += thisDiff.text;

        prevEqual = null;

        break;

      case EQUAL:

        if (count_delete + count_insert > 1) {

          boolean both_types = count_delete != 0 && count_insert != 0;

          // Delete the offending records.

          pointer.previous();  // Reverse direction.

          while (count_delete-- > 0) {

            pointer.previous();

            pointer.remove();

          }

          while (count_insert-- > 0) {

            pointer.previous();

            pointer.remove();

          }

          if (both_types) {

            // Factor out any common prefixies.

            commonlength = diff_commonPrefix(text_insert, text_delete);

            if (commonlength != 0) {

              if (pointer.hasPrevious()) {

                thisDiff = pointer.previous();

                assert thisDiff.operation == Operation.EQUAL

                       : "Previous diff should have been an equality.";

                thisDiff.text += text_insert.substring(0, commonlength);

                pointer.next();

              } else {

                pointer.add(new Diff(Operation.EQUAL,

                    text_insert.substring(0, commonlength)));

              }

              text_insert = text_insert.substring(commonlength);

              text_delete = text_delete.substring(commonlength);

            }

            // Factor out any common suffixies.

            commonlength = diff_commonSuffix(text_insert, text_delete);

            if (commonlength != 0) {

              thisDiff = pointer.next();

              thisDiff.text = text_insert.substring(text_insert.length()

                  - commonlength) + thisDiff.text;

              text_insert = text_insert.substring(0, text_insert.length()

                  - commonlength);

              text_delete = text_delete.substring(0, text_delete.length()

                  - commonlength);

              pointer.previous();

            }

          }

          // Insert the merged records.

          if (text_delete.length() != 0) {

            pointer.add(new Diff(Operation.DELETE, text_delete));

          }

          if (text_insert.length() != 0) {

            pointer.add(new Diff(Operation.INSERT, text_insert));

          }

          // Step forward to the equality.

          thisDiff = pointer.hasNext() ? pointer.next() : null;

        } else if (prevEqual != null) {

          // Merge this equality with the previous one.

          prevEqual.text += thisDiff.text;

          pointer.remove();

          thisDiff = pointer.previous();

          pointer.next();  // Forward direction

        }

        count_insert = 0;

        count_delete = 0;

        text_delete = "";

        text_insert = "";

        prevEqual = thisDiff;

        break;

      }

      thisDiff = pointer.hasNext() ? pointer.next() : null;

    }

    if (diffs.getLast().text.length() == 0) {

      diffs.removeLast();  // Remove the dummy entry at the end.

    }



    /*

     * Second pass: look for single edits surrounded on both sides by equalities

     * which can be shifted sideways to eliminate an equality.

     * e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC

     */

    boolean changes = false;

    // Create a new iterator at the start.

    // (As opposed to walking the current one back.)

    pointer = diffs.listIterator();

    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;

    thisDiff = pointer.hasNext() ? pointer.next() : null;

    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;

    // Intentionally ignore the first and last element (don't need checking).

    while (nextDiff != null) {

      if (prevDiff.operation == Operation.EQUAL &&

          nextDiff.operation == Operation.EQUAL) {

        // This is a single edit surrounded by equalities.

        if (thisDiff.text.endsWith(prevDiff.text)) {

          // Shift the edit over the previous equality.

          thisDiff.text = prevDiff.text

              + thisDiff.text.substring(0, thisDiff.text.length()

                                           - prevDiff.text.length());

          nextDiff.text = prevDiff.text + nextDiff.text;

          pointer.previous(); // Walk past nextDiff.

          pointer.previous(); // Walk past thisDiff.

          pointer.previous(); // Walk past prevDiff.

          pointer.remove(); // Delete prevDiff.

          pointer.next(); // Walk past thisDiff.

          thisDiff = pointer.next(); // Walk past nextDiff.

          nextDiff = pointer.hasNext() ? pointer.next() : null;

          changes = true;

        } else if (thisDiff.text.startsWith(nextDiff.text)) {

          // Shift the edit over the next equality.

          prevDiff.text += nextDiff.text;

          thisDiff.text = thisDiff.text.substring(nextDiff.text.length())

              + nextDiff.text;

          pointer.remove(); // Delete nextDiff.

          nextDiff = pointer.hasNext() ? pointer.next() : null;

          changes = true;

        }

      }

      prevDiff = thisDiff;

      thisDiff = nextDiff;

      nextDiff = pointer.hasNext() ? pointer.next() : null;

    }

    // If shifts were made, the diff needs reordering and another shift sweep.

    if (changes) {

      diff_cleanupMerge(diffs);

    }

  }





  /**

   * loc is a location in text1, compute and return the equivalent location in

   * text2.

   * e.g. "The cat" vs "The big cat", 1->1, 5->8

   * @param diffs LinkedList of Diff objects.

   * @param loc Location within text1.

   * @return Location within text2.

   */

  public int diff_xIndex(LinkedList<Diff> diffs, int loc) {

    int chars1 = 0;

    int chars2 = 0;

    int last_chars1 = 0;

    int last_chars2 = 0;

    Diff lastDiff = null;

    for (Diff aDiff : diffs) {

      if (aDiff.operation != Operation.INSERT) {

        // Equality or deletion.

        chars1 += aDiff.text.length();

      }

      if (aDiff.operation != Operation.DELETE) {

        // Equality or insertion.

        chars2 += aDiff.text.length();

      }

      if (chars1 > loc) {

        // Overshot the location.

        lastDiff = aDiff;

        break;

      }

      last_chars1 = chars1;

      last_chars2 = chars2;

    }

    if (lastDiff != null && lastDiff.operation == Operation.DELETE) {

      // The location was deleted.

      return last_chars2;

    }

    // Add the remaining character length.

    return last_chars2 + (loc - last_chars1);

  }





  /**

   * Convert a Diff list into a pretty HTML report.

   * @param diffs LinkedList of Diff objects.

   * @return HTML representation.

   */

  public String diff_prettyHtml(LinkedList<Diff> diffs) {

    StringBuilder html = new StringBuilder();

    int i = 0;

    for (Diff aDiff : diffs) {

      String text = aDiff.text.replace("&", "&amp;").replace("<", "&lt;")

          .replace(">", "&gt;").replace("\n", "&para;<br>");

      switch (aDiff.operation) {

      case INSERT:

        html.append("<ins style=\"background:#e6ffe6;\">").append(text)

            .append("</ins>");

        break;

      case DELETE:

        html.append("<del style=\"background:#ffe6e6;\">").append(text)

            .append("</del>");

        break;

      case EQUAL:

        html.append("<span>").append(text).append("</span>");

        break;

      }

      if (aDiff.operation != Operation.DELETE) {

        i += aDiff.text.length();

      }

    }

    return html.toString();

  }





  /**

   * Compute and return the source text (all equalities and deletions).

   * @param diffs LinkedList of Diff objects.

   * @return Source text.

   */

  public String diff_text1(LinkedList<Diff> diffs) {

    StringBuilder text = new StringBuilder();

    for (Diff aDiff : diffs) {

      if (aDiff.operation != Operation.INSERT) {

        text.append(aDiff.text);

      }

    }

    return text.toString();

  }





  /**

   * Compute and return the destination text (all equalities and insertions).

   * @param diffs LinkedList of Diff objects.

   * @return Destination text.

   */

  public String diff_text2(LinkedList<Diff> diffs) {

    StringBuilder text = new StringBuilder();

    for (Diff aDiff : diffs) {

      if (aDiff.operation != Operation.DELETE) {

        text.append(aDiff.text);

      }

    }

    return text.toString();

  }





  /**

   * Compute the Levenshtein distance; the number of inserted, deleted or

   * substituted characters.

   * @param diffs LinkedList of Diff objects.

   * @return Number of changes.

   */

  public int diff_levenshtein(LinkedList<Diff> diffs) {

    int levenshtein = 0;

    int insertions = 0;

    int deletions = 0;

    for (Diff aDiff : diffs) {

      switch (aDiff.operation) {

      case INSERT:

        insertions += aDiff.text.length();

        break;

      case DELETE:

        deletions += aDiff.text.length();

        break;

      case EQUAL:

        // A deletion and an insertion is one substitution.

        levenshtein += Math.max(insertions, deletions);

        insertions = 0;

        deletions = 0;

        break;

      }

    }

    levenshtein += Math.max(insertions, deletions);

    return levenshtein;

  }





  /**

   * Crush the diff into an encoded string which describes the operations

   * required to transform text1 into text2.

   * E.g. =3\t-2\t+ing  -> Keep 3 chars, delete 2 chars, insert 'ing'.

   * Operations are tab-separated.  Inserted text is escaped using %xx notation.

   * @param diffs Array of diff tuples.

   * @return Delta text.

   */

  public String diff_toDelta(LinkedList<Diff> diffs) {

    StringBuilder text = new StringBuilder();

    for (Diff aDiff : diffs) {

      switch (aDiff.operation) {

      case INSERT:

        try {

          text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8")

                                            .replace('+', ' ')).append("\t");

        } catch (UnsupportedEncodingException e) {

          // Not likely on modern system.

          throw new Error("This system does not support UTF-8.", e);

        }

        break;

      case DELETE:

        text.append("-").append(aDiff.text.length()).append("\t");

        break;

      case EQUAL:

        text.append("=").append(aDiff.text.length()).append("\t");

        break;

      }

    }

    String delta = text.toString();

    if (delta.length() != 0) {

      // Strip off trailing tab character.

      delta = delta.substring(0, delta.length() - 1);

      delta = unescapeForEncodeUriCompatability(delta);

    }

    return delta;

  }





  /**

   * Given the original text1, and an encoded string which describes the

   * operations required to transform text1 into text2, compute the full diff.

   * @param text1 Source string for the diff.

   * @param delta Delta text.

   * @return Array of diff tuples or null if invalid.

   * @throws IllegalArgumentException If invalid input.

   */

  public LinkedList<Diff> diff_fromDelta(String text1, String delta)

      throws IllegalArgumentException {

    LinkedList<Diff> diffs = new LinkedList<Diff>();

    int pointer = 0;  // Cursor in text1

    String[] tokens = delta.split("\t");

    for (String token : tokens) {

      if (token.length() == 0) {

        // Blank tokens are ok (from a trailing \t).

        continue;

      }

      // Each token begins with a one character parameter which specifies the

      // operation of this token (delete, insert, equality).

      String param = token.substring(1);

      switch (token.charAt(0)) {

      case '+':

        // decode would change all "+" to " "

        param = param.replace("+", "%2B");

        try {

          param = URLDecoder.decode(param, "UTF-8");

        } catch (UnsupportedEncodingException e) {

          // Not likely on modern system.

          throw new Error("This system does not support UTF-8.", e);

        } catch (IllegalArgumentException e) {

          // Malformed URI sequence.

          throw new IllegalArgumentException(

              "Illegal escape in diff_fromDelta: " + param, e);

        }

        diffs.add(new Diff(Operation.INSERT, param));

        break;

      case '-':

        // Fall through.

      case '=':

        int n;

        try {

          n = Integer.parseInt(param);

        } catch (NumberFormatException e) {

          throw new IllegalArgumentException(

              "Invalid number in diff_fromDelta: " + param, e);

        }

        if (n < 0) {

          throw new IllegalArgumentException(

              "Negative number in diff_fromDelta: " + param);

        }

        String text;

        try {

          text = text1.substring(pointer, pointer += n);

        } catch (StringIndexOutOfBoundsException e) {

          throw new IllegalArgumentException("Delta length (" + pointer

              + ") larger than source text length (" + text1.length()

              + ").", e);

        }

        if (token.charAt(0) == '=') {

          diffs.add(new Diff(Operation.EQUAL, text));

        } else {

          diffs.add(new Diff(Operation.DELETE, text));

        }

        break;

      default:

        // Anything else is an error.

        throw new IllegalArgumentException(

            "Invalid diff operation in diff_fromDelta: " + token.charAt(0));

      }

    }

    if (pointer != text1.length()) {

      throw new IllegalArgumentException("Delta length (" + pointer

          + ") smaller than source text length (" + text1.length() + ").");

    }

    return diffs;

  }





  //  MATCH FUNCTIONS





  /**

   * Locate the best instance of 'pattern' in 'text' near 'loc'.

   * Returns -1 if no match found.

   * @param text The text to search.

   * @param pattern The pattern to search for.

   * @param loc The location to search around.

   * @return Best match index or -1.

   */

  public int match_main(String text, String pattern, int loc) {

    // Check for null inputs.

    if (text == null || pattern == null) {

      throw new IllegalArgumentException("Null inputs. (match_main)");

    }



    loc = Math.max(0, Math.min(loc, text.length()));

    if (text.equals(pattern)) {

      // Shortcut (potentially not guaranteed by the algorithm)

      return 0;

    } else if (text.length() == 0) {

      // Nothing to match.

      return -1;

    } else if (loc + pattern.length() <= text.length()

        && text.substring(loc, loc + pattern.length()).equals(pattern)) {

      // Perfect match at the perfect spot!  (Includes case of null pattern)

      return loc;

    } else {

      // Do a fuzzy compare.

      return match_bitap(text, pattern, loc);

    }

  }





  /**

   * Locate the best instance of 'pattern' in 'text' near 'loc' using the

   * Bitap algorithm.  Returns -1 if no match found.

   * @param text The text to search.

   * @param pattern The pattern to search for.

   * @param loc The location to search around.

   * @return Best match index or -1.

   */

  protected int match_bitap(String text, String pattern, int loc) {

    assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits)

        : "Pattern too long for this application.";



    // Initialise the alphabet.

    Map<Character, Integer> s = match_alphabet(pattern);



    // Highest score beyond which we give up.

    double score_threshold = Match_Threshold;

    // Is there a nearby exact match? (speedup)

    int best_loc = text.indexOf(pattern, loc);

    if (best_loc != -1) {

      score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern),

          score_threshold);

      // What about in the other direction? (speedup)

      best_loc = text.lastIndexOf(pattern, loc + pattern.length());

      if (best_loc != -1) {

        score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern),

            score_threshold);

      }

    }



    // Initialise the bit arrays.

    int matchmask = 1 << (pattern.length() - 1);

    best_loc = -1;



    int bin_min, bin_mid;

    int bin_max = pattern.length() + text.length();

    // Empty initialization added to appease Java compiler.

    int[] last_rd = new int[0];

    for (int d = 0; d < pattern.length(); d++) {

      // Scan for the best match; each iteration allows for one more error.

      // Run a binary search to determine how far from 'loc' we can stray at

      // this error level.

      bin_min = 0;

      bin_mid = bin_max;

      while (bin_min < bin_mid) {

        if (match_bitapScore(d, loc + bin_mid, loc, pattern)

            <= score_threshold) {

          bin_min = bin_mid;

        } else {

          bin_max = bin_mid;

        }

        bin_mid = (bin_max - bin_min) / 2 + bin_min;

      }

      // Use the result from this iteration as the maximum for the next.

      bin_max = bin_mid;

      int start = Math.max(1, loc - bin_mid + 1);

      int finish = Math.min(loc + bin_mid, text.length()) + pattern.length();



      int[] rd = new int[finish + 2];

      rd[finish + 1] = (1 << d) - 1;

      for (int j = finish; j >= start; j--) {

        int charMatch;

        if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) {

          // Out of range.

          charMatch = 0;

        } else {

          charMatch = s.get(text.charAt(j - 1));

        }

        if (d == 0) {

          // First pass: exact match.

          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch;

        } else {

          // Subsequent passes: fuzzy match.

          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch

              | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1];

        }

        if ((rd[j] & matchmask) != 0) {

          double score = match_bitapScore(d, j - 1, loc, pattern);

          // This match will almost certainly be better than any existing

          // match.  But check anyway.

          if (score <= score_threshold) {

            // Told you so.

            score_threshold = score;

            best_loc = j - 1;

            if (best_loc > loc) {

              // When passing loc, don't exceed our current distance from loc.

              start = Math.max(1, 2 * loc - best_loc);

            } else {

              // Already passed loc, downhill from here on in.

              break;

            }

          }

        }

      }

      if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) {

        // No hope for a (better) match at greater error levels.

        break;

      }

      last_rd = rd;

    }

    return best_loc;

  }





  /**

   * Compute and return the score for a match with e errors and x location.

   * @param e Number of errors in match.

   * @param x Location of match.

   * @param loc Expected location of match.

   * @param pattern Pattern being sought.

   * @return Overall score for match (0.0 = good, 1.0 = bad).

   */

  private double match_bitapScore(int e, int x, int loc, String pattern) {

    float accuracy = (float) e / pattern.length();

    int proximity = Math.abs(loc - x);

    if (Match_Distance == 0) {

      // Dodge divide by zero error.

      return proximity == 0 ? accuracy : 1.0;

    }

    return accuracy + (proximity / (float) Match_Distance);

  }





  /**

   * Initialise the alphabet for the Bitap algorithm.

   * @param pattern The text to encode.

   * @return Hash of character locations.

   */

  protected Map<Character, Integer> match_alphabet(String pattern) {

    Map<Character, Integer> s = new HashMap<Character, Integer>();

    char[] char_pattern = pattern.toCharArray();

    for (char c : char_pattern) {

      s.put(c, 0);

    }

    int i = 0;

    for (char c : char_pattern) {

      s.put(c, s.get(c) | (1 << (pattern.length() - i - 1)));

      i++;

    }

    return s;

  }





  //  PATCH FUNCTIONS





  /**

   * Increase the context until it is unique,

   * but don't let the pattern expand beyond Match_MaxBits.

   * @param patch The patch to grow.

   * @param text Source text.

   */

  protected void patch_addContext(Patch patch, String text) {

    if (text.length() == 0) {

      return;

    }

    String pattern = text.substring(patch.start2, patch.start2 + patch.length1);

    int padding = 0;



    // Look for the first and last matches of pattern in text.  If two different

    // matches are found, increase the pattern length.

    while (text.indexOf(pattern) != text.lastIndexOf(pattern)

        && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) {

      padding += Patch_Margin;

      pattern = text.substring(Math.max(0, patch.start2 - padding),

          Math.min(text.length(), patch.start2 + patch.length1 + padding));

    }

    // Add one chunk for good luck.

    padding += Patch_Margin;



    // Add the prefix.

    String prefix = text.substring(Math.max(0, patch.start2 - padding),

        patch.start2);

    if (prefix.length() != 0) {

      patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix));

    }

    // Add the suffix.

    String suffix = text.substring(patch.start2 + patch.length1,

        Math.min(text.length(), patch.start2 + patch.length1 + padding));

    if (suffix.length() != 0) {

      patch.diffs.addLast(new Diff(Operation.EQUAL, suffix));

    }



    // Roll back the start points.

    patch.start1 -= prefix.length();

    patch.start2 -= prefix.length();

    // Extend the lengths.

    patch.length1 += prefix.length() + suffix.length();

    patch.length2 += prefix.length() + suffix.length();

  }





  /**

   * Compute a list of patches to turn text1 into text2.

   * A set of diffs will be computed.

   * @param text1 Old text.

   * @param text2 New text.

   * @return LinkedList of Patch objects.

   */

  public LinkedList<Patch> patch_make(String text1, String text2) {

    if (text1 == null || text2 == null) {

      throw new IllegalArgumentException("Null inputs. (patch_make)");

    }

    // No diffs provided, compute our own.

    LinkedList<Diff> diffs = diff_main(text1, text2, true);

    if (diffs.size() > 2) {

      diff_cleanupSemantic(diffs);

      diff_cleanupEfficiency(diffs);

    }

    return patch_make(text1, diffs);

  }





  /**

   * Compute a list of patches to turn text1 into text2.

   * text1 will be derived from the provided diffs.

   * @param diffs Array of diff tuples for text1 to text2.

   * @return LinkedList of Patch objects.

   */

  public LinkedList<Patch> patch_make(LinkedList<Diff> diffs) {

    if (diffs == null) {

      throw new IllegalArgumentException("Null inputs. (patch_make)");

    }

    // No origin string provided, compute our own.

    String text1 = diff_text1(diffs);

    return patch_make(text1, diffs);

  }





  /**

   * Compute a list of patches to turn text1 into text2.

   * text2 is ignored, diffs are the delta between text1 and text2.

   * @param text1 Old text

   * @param text2 Ignored.

   * @param diffs Array of diff tuples for text1 to text2.

   * @return LinkedList of Patch objects.

   * @deprecated Prefer patch_make(String text1, LinkedList<Diff> diffs).

   */

  public LinkedList<Patch> patch_make(String text1, String text2,

      LinkedList<Diff> diffs) {

    return patch_make(text1, diffs);

  }





  /**

   * Compute a list of patches to turn text1 into text2.

   * text2 is not provided, diffs are the delta between text1 and text2.

   * @param text1 Old text.

   * @param diffs Array of diff tuples for text1 to text2.

   * @return LinkedList of Patch objects.

   */

  public LinkedList<Patch> patch_make(String text1, LinkedList<Diff> diffs) {

    if (text1 == null || diffs == null) {

      throw new IllegalArgumentException("Null inputs. (patch_make)");

    }



    LinkedList<Patch> patches = new LinkedList<Patch>();

    if (diffs.isEmpty()) {

      return patches;  // Get rid of the null case.

    }

    Patch patch = new Patch();

    int char_count1 = 0;  // Number of characters into the text1 string.

    int char_count2 = 0;  // Number of characters into the text2 string.

    // Start with text1 (prepatch_text) and apply the diffs until we arrive at

    // text2 (postpatch_text). We recreate the patches one by one to determine

    // context info.

    String prepatch_text = text1;

    String postpatch_text = text1;

    for (Diff aDiff : diffs) {

      if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) {

        // A new patch starts here.

        patch.start1 = char_count1;

        patch.start2 = char_count2;

      }



      switch (aDiff.operation) {

      case INSERT:

        patch.diffs.add(aDiff);

        patch.length2 += aDiff.text.length();

        postpatch_text = postpatch_text.substring(0, char_count2)

            + aDiff.text + postpatch_text.substring(char_count2);

        break;

      case DELETE:

        patch.length1 += aDiff.text.length();

        patch.diffs.add(aDiff);

        postpatch_text = postpatch_text.substring(0, char_count2)

            + postpatch_text.substring(char_count2 + aDiff.text.length());

        break;

      case EQUAL:

        if (aDiff.text.length() <= 2 * Patch_Margin

            && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) {

          // Small equality inside a patch.

          patch.diffs.add(aDiff);

          patch.length1 += aDiff.text.length();

          patch.length2 += aDiff.text.length();

        }



        if (aDiff.text.length() >= 2 * Patch_Margin) {

          // Time for a new patch.

          if (!patch.diffs.isEmpty()) {

            patch_addContext(patch, prepatch_text);

            patches.add(patch);

            patch = new Patch();

            // Unlike Unidiff, our patch lists have a rolling context.

            // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff

            // Update prepatch text & pos to reflect the application of the

            // just completed patch.

            prepatch_text = postpatch_text;

            char_count1 = char_count2;

          }

        }

        break;

      }



      // Update the current character count.

      if (aDiff.operation != Operation.INSERT) {

        char_count1 += aDiff.text.length();

      }

      if (aDiff.operation != Operation.DELETE) {

        char_count2 += aDiff.text.length();

      }

    }

    // Pick up the leftover patch if not empty.

    if (!patch.diffs.isEmpty()) {

      patch_addContext(patch, prepatch_text);

      patches.add(patch);

    }



    return patches;

  }





  /**

   * Given an array of patches, return another array that is identical.

   * @param patches Array of patch objects.

   * @return Array of patch objects.

   */

  public LinkedList<Patch> patch_deepCopy(LinkedList<Patch> patches) {

    LinkedList<Patch> patchesCopy = new LinkedList<Patch>();

    for (Patch aPatch : patches) {

      Patch patchCopy = new Patch();

      for (Diff aDiff : aPatch.diffs) {

        Diff diffCopy = new Diff(aDiff.operation, aDiff.text);

        patchCopy.diffs.add(diffCopy);

      }

      patchCopy.start1 = aPatch.start1;

      patchCopy.start2 = aPatch.start2;

      patchCopy.length1 = aPatch.length1;

      patchCopy.length2 = aPatch.length2;

      patchesCopy.add(patchCopy);

    }

    return patchesCopy;

  }





  /**

   * Merge a set of patches onto the text.  Return a patched text, as well

   * as an array of true/false values indicating which patches were applied.

   * @param patches Array of patch objects

   * @param text Old text.

   * @return Two element Object array, containing the new text and an array of

   *      boolean values.

   */

  public Object[] patch_apply(LinkedList<Patch> patches, String text) {

    if (patches.isEmpty()) {

      return new Object[]{text, new boolean[0]};

    }



    // Deep copy the patches so that no changes are made to originals.

    patches = patch_deepCopy(patches);



    String nullPadding = patch_addPadding(patches);

    text = nullPadding + text + nullPadding;

    patch_splitMax(patches);



    int x = 0;

    // delta keeps track of the offset between the expected and actual location

    // of the previous patch.  If there are patches expected at positions 10 and

    // 20, but the first patch was found at 12, delta is 2 and the second patch

    // has an effective expected position of 22.

    int delta = 0;

    boolean[] results = new boolean[patches.size()];

    for (Patch aPatch : patches) {

      int expected_loc = aPatch.start2 + delta;

      String text1 = diff_text1(aPatch.diffs);

      int start_loc;

      int end_loc = -1;

      if (text1.length() > this.Match_MaxBits) {

        // patch_splitMax will only provide an oversized pattern in the case of

        // a monster delete.

        start_loc = match_main(text,

            text1.substring(0, this.Match_MaxBits), expected_loc);

        if (start_loc != -1) {

          end_loc = match_main(text,

              text1.substring(text1.length() - this.Match_MaxBits),

              expected_loc + text1.length() - this.Match_MaxBits);

          if (end_loc == -1 || start_loc >= end_loc) {

            // Can't find valid trailing context.  Drop this patch.

            start_loc = -1;

          }

        }

      } else {

        start_loc = match_main(text, text1, expected_loc);

      }

      if (start_loc == -1) {

        // No match found.  :(

        results[x] = false;

        // Subtract the delta for this failed patch from subsequent patches.

        delta -= aPatch.length2 - aPatch.length1;

      } else {

        // Found a match.  :)

        results[x] = true;

        delta = start_loc - expected_loc;

        String text2;

        if (end_loc == -1) {

          text2 = text.substring(start_loc,

              Math.min(start_loc + text1.length(), text.length()));

        } else {

          text2 = text.substring(start_loc,

              Math.min(end_loc + this.Match_MaxBits, text.length()));

        }

        if (text1.equals(text2)) {

          // Perfect match, just shove the replacement text in.

          text = text.substring(0, start_loc) + diff_text2(aPatch.diffs)

              + text.substring(start_loc + text1.length());

        } else {

          // Imperfect match.  Run a diff to get a framework of equivalent

          // indices.

          LinkedList<Diff> diffs = diff_main(text1, text2, false);

          if (text1.length() > this.Match_MaxBits

              && diff_levenshtein(diffs) / (float) text1.length()

              > this.Patch_DeleteThreshold) {

            // The end points match, but the content is unacceptably bad.

            results[x] = false;

          } else {

            diff_cleanupSemanticLossless(diffs);

            int index1 = 0;

            for (Diff aDiff : aPatch.diffs) {

              if (aDiff.operation != Operation.EQUAL) {

                int index2 = diff_xIndex(diffs, index1);

                if (aDiff.operation == Operation.INSERT) {

                  // Insertion

                  text = text.substring(0, start_loc + index2) + aDiff.text

                      + text.substring(start_loc + index2);

                } else if (aDiff.operation == Operation.DELETE) {

                  // Deletion

                  text = text.substring(0, start_loc + index2)

                      + text.substring(start_loc + diff_xIndex(diffs,

                      index1 + aDiff.text.length()));

                }

              }

              if (aDiff.operation != Operation.DELETE) {

                index1 += aDiff.text.length();

              }

            }

          }

        }

      }

      x++;

    }

    // Strip the padding off.

    text = text.substring(nullPadding.length(), text.length()

        - nullPadding.length());

    return new Object[]{text, results};

  }





  /**

   * Add some padding on text start and end so that edges can match something.

   * Intended to be called only from within patch_apply.

   * @param patches Array of patch objects.

   * @return The padding string added to each side.

   */

  public String patch_addPadding(LinkedList<Patch> patches) {

    short paddingLength = this.Patch_Margin;

    String nullPadding = "";

    for (short x = 1; x <= paddingLength; x++) {

      nullPadding += String.valueOf((char) x);

    }



    // Bump all the patches forward.

    for (Patch aPatch : patches) {

      aPatch.start1 += paddingLength;

      aPatch.start2 += paddingLength;

    }



    // Add some padding on start of first diff.

    Patch patch = patches.getFirst();

    LinkedList<Diff> diffs = patch.diffs;

    if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) {

      // Add nullPadding equality.

      diffs.addFirst(new Diff(Operation.EQUAL, nullPadding));

      patch.start1 -= paddingLength;  // Should be 0.

      patch.start2 -= paddingLength;  // Should be 0.

      patch.length1 += paddingLength;

      patch.length2 += paddingLength;

    } else if (paddingLength > diffs.getFirst().text.length()) {

      // Grow first equality.

      Diff firstDiff = diffs.getFirst();

      int extraLength = paddingLength - firstDiff.text.length();

      firstDiff.text = nullPadding.substring(firstDiff.text.length())

          + firstDiff.text;

      patch.start1 -= extraLength;

      patch.start2 -= extraLength;

      patch.length1 += extraLength;

      patch.length2 += extraLength;

    }



    // Add some padding on end of last diff.

    patch = patches.getLast();

    diffs = patch.diffs;

    if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) {

      // Add nullPadding equality.

      diffs.addLast(new Diff(Operation.EQUAL, nullPadding));

      patch.length1 += paddingLength;

      patch.length2 += paddingLength;

    } else if (paddingLength > diffs.getLast().text.length()) {

      // Grow last equality.

      Diff lastDiff = diffs.getLast();

      int extraLength = paddingLength - lastDiff.text.length();

      lastDiff.text += nullPadding.substring(0, extraLength);

      patch.length1 += extraLength;

      patch.length2 += extraLength;

    }



    return nullPadding;

  }





  /**

   * Look through the patches and break up any which are longer than the

   * maximum limit of the match algorithm.

   * Intended to be called only from within patch_apply.

   * @param patches LinkedList of Patch objects.

   */

  public void patch_splitMax(LinkedList<Patch> patches) {

    short patch_size = Match_MaxBits;

    String precontext, postcontext;

    Patch patch;

    int start1, start2;

    boolean empty;

    Operation diff_type;

    String diff_text;

    ListIterator<Patch> pointer = patches.listIterator();

    Patch bigpatch = pointer.hasNext() ? pointer.next() : null;

    while (bigpatch != null) {

      if (bigpatch.length1 <= Match_MaxBits) {

        bigpatch = pointer.hasNext() ? pointer.next() : null;

        continue;

      }

      // Remove the big old patch.

      pointer.remove();

      start1 = bigpatch.start1;

      start2 = bigpatch.start2;

      precontext = "";

      while (!bigpatch.diffs.isEmpty()) {

        // Create one of several smaller patches.

        patch = new Patch();

        empty = true;

        patch.start1 = start1 - precontext.length();

        patch.start2 = start2 - precontext.length();

        if (precontext.length() != 0) {

          patch.length1 = patch.length2 = precontext.length();

          patch.diffs.add(new Diff(Operation.EQUAL, precontext));

        }

        while (!bigpatch.diffs.isEmpty()

            && patch.length1 < patch_size - Patch_Margin) {

          diff_type = bigpatch.diffs.getFirst().operation;

          diff_text = bigpatch.diffs.getFirst().text;

          if (diff_type == Operation.INSERT) {

            // Insertions are harmless.

            patch.length2 += diff_text.length();

            start2 += diff_text.length();

            patch.diffs.addLast(bigpatch.diffs.removeFirst());

            empty = false;

          } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1

              && patch.diffs.getFirst().operation == Operation.EQUAL

              && diff_text.length() > 2 * patch_size) {

            // This is a large deletion.  Let it pass in one chunk.

            patch.length1 += diff_text.length();

            start1 += diff_text.length();

            empty = false;

            patch.diffs.add(new Diff(diff_type, diff_text));

            bigpatch.diffs.removeFirst();

          } else {

            // Deletion or equality.  Only take as much as we can stomach.

            diff_text = diff_text.substring(0, Math.min(diff_text.length(),

                patch_size - patch.length1 - Patch_Margin));

            patch.length1 += diff_text.length();

            start1 += diff_text.length();

            if (diff_type == Operation.EQUAL) {

              patch.length2 += diff_text.length();

              start2 += diff_text.length();

            } else {

              empty = false;

            }

            patch.diffs.add(new Diff(diff_type, diff_text));

            if (diff_text.equals(bigpatch.diffs.getFirst().text)) {

              bigpatch.diffs.removeFirst();

            } else {

              bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text

                  .substring(diff_text.length());

            }

          }

        }

        // Compute the head context for the next patch.

        precontext = diff_text2(patch.diffs);

        precontext = precontext.substring(Math.max(0, precontext.length()

            - Patch_Margin));

        // Append the end context for this patch.

        if (diff_text1(bigpatch.diffs).length() > Patch_Margin) {

          postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin);

        } else {

          postcontext = diff_text1(bigpatch.diffs);

        }

        if (postcontext.length() != 0) {

          patch.length1 += postcontext.length();

          patch.length2 += postcontext.length();

          if (!patch.diffs.isEmpty()

              && patch.diffs.getLast().operation == Operation.EQUAL) {

            patch.diffs.getLast().text += postcontext;

          } else {

            patch.diffs.add(new Diff(Operation.EQUAL, postcontext));

          }

        }

        if (!empty) {

          pointer.add(patch);

        }

      }

      bigpatch = pointer.hasNext() ? pointer.next() : null;

    }

  }





  /**

   * Take a list of patches and return a textual representation.

   * @param patches List of Patch objects.

   * @return Text representation of patches.

   */

  public String patch_toText(List<Patch> patches) {

    StringBuilder text = new StringBuilder();

    for (Patch aPatch : patches) {

      text.append(aPatch);

    }

    return text.toString();

  }





  /**

   * Parse a textual representation of patches and return a List of Patch

   * objects.

   * @param textline Text representation of patches.

   * @return List of Patch objects.

   * @throws IllegalArgumentException If invalid input.

   */

  public List<Patch> patch_fromText(String textline)

      throws IllegalArgumentException {

    List<Patch> patches = new LinkedList<Patch>();

    if (textline.length() == 0) {

      return patches;

    }

    List<String> textList = Arrays.asList(textline.split("\n"));

    LinkedList<String> text = new LinkedList<String>(textList);

    Patch patch;

    Pattern patchHeader

        = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$");

    Matcher m;

    char sign;

    String line;

    while (!text.isEmpty()) {

      m = patchHeader.matcher(text.getFirst());

      if (!m.matches()) {

        throw new IllegalArgumentException(

            "Invalid patch string: " + text.getFirst());

      }

      patch = new Patch();

      patches.add(patch);

      patch.start1 = Integer.parseInt(m.group(1));

      if (m.group(2).length() == 0) {

        patch.start1--;

        patch.length1 = 1;

      } else if (m.group(2).equals("0")) {

        patch.length1 = 0;

      } else {

        patch.start1--;

        patch.length1 = Integer.parseInt(m.group(2));

      }



      patch.start2 = Integer.parseInt(m.group(3));

      if (m.group(4).length() == 0) {

        patch.start2--;

        patch.length2 = 1;

      } else if (m.group(4).equals("0")) {

        patch.length2 = 0;

      } else {

        patch.start2--;

        patch.length2 = Integer.parseInt(m.group(4));

      }

      text.removeFirst();



      while (!text.isEmpty()) {

        try {

          sign = text.getFirst().charAt(0);

        } catch (IndexOutOfBoundsException e) {

          // Blank line?  Whatever.

          text.removeFirst();

          continue;

        }

        line = text.getFirst().substring(1);

        line = line.replace("+", "%2B");  // decode would change all "+" to " "

        try {

          line = URLDecoder.decode(line, "UTF-8");

        } catch (UnsupportedEncodingException e) {

          // Not likely on modern system.

          throw new Error("This system does not support UTF-8.", e);

        } catch (IllegalArgumentException e) {

          // Malformed URI sequence.

          throw new IllegalArgumentException(

              "Illegal escape in patch_fromText: " + line, e);

        }

        if (sign == '-') {

          // Deletion.

          patch.diffs.add(new Diff(Operation.DELETE, line));

        } else if (sign == '+') {

          // Insertion.

          patch.diffs.add(new Diff(Operation.INSERT, line));

        } else if (sign == ' ') {

          // Minor equality.

          patch.diffs.add(new Diff(Operation.EQUAL, line));

        } else if (sign == '@') {

          // Start of next patch.

          break;

        } else {

          // WTF?

          throw new IllegalArgumentException(

              "Invalid patch mode '" + sign + "' in: " + line);

        }

        text.removeFirst();

      }

    }

    return patches;

  }





  /**

   * Class representing one diff operation.

   */

  public static class Diff {

    /**

     * One of: INSERT, DELETE or EQUAL.

     */

    public Operation operation;

    /**

     * The text associated with this diff operation.

     */

    public String text;



    /**

     * Constructor.  Initializes the diff with the provided values.

     * @param operation One of INSERT, DELETE or EQUAL.

     * @param text The text being applied.

     */

    public Diff(Operation operation, String text) {

      // Construct a diff with the specified operation and text.

      this.operation = operation;

      this.text = text;

    }





    /**

     * Display a human-readable version of this Diff.

     * @return text version.

     */

    public String toString() {

      String prettyText = this.text.replace('\n', '\u00b6');

      return "Diff(" + this.operation + ",\"" + prettyText + "\")";

    }





    /**

     * Is this Diff equivalent to another Diff?

     * @param d Another Diff to compare against.

     * @return true or false.

     */

    public boolean equals(Object d) {

      try {

        return (((Diff) d).operation == this.operation)

               && (((Diff) d).text.equals(this.text));

      } catch (ClassCastException e) {

        return false;

      }

    }

  }





  /**

   * Class representing one patch operation.

   */

  public static class Patch {

    public LinkedList<Diff> diffs;

    public int start1;

    public int start2;

    public int length1;

    public int length2;





    /**

     * Constructor.  Initializes with an empty list of diffs.

     */

    public Patch() {

      this.diffs = new LinkedList<Diff>();

    }





    /**

     * Emmulate GNU diff's format.

     * Header: @@ -382,8 +481,9 @@

     * Indicies are printed as 1-based, not 0-based.

     * @return The GNU diff string.

     */

    public String toString() {

      String coords1, coords2;

      if (this.length1 == 0) {

        coords1 = this.start1 + ",0";

      } else if (this.length1 == 1) {

        coords1 = Integer.toString(this.start1 + 1);

      } else {

        coords1 = (this.start1 + 1) + "," + this.length1;

      }

      if (this.length2 == 0) {

        coords2 = this.start2 + ",0";

      } else if (this.length2 == 1) {

        coords2 = Integer.toString(this.start2 + 1);

      } else {

        coords2 = (this.start2 + 1) + "," + this.length2;

      }

      StringBuilder text = new StringBuilder();

      text.append("@@ -").append(coords1).append(" +").append(coords2)

          .append(" @@\n");

      // Escape the body of the patch with %xx notation.

      for (Diff aDiff : this.diffs) {

        switch (aDiff.operation) {

        case INSERT:

          text.append('+');

          break;

        case DELETE:

          text.append('-');

          break;

        case EQUAL:

          text.append(' ');

          break;

        }

        try {

          text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' '))

              .append("\n");

        } catch (UnsupportedEncodingException e) {

          // Not likely on modern system.

          throw new Error("This system does not support UTF-8.", e);

        }

      }

      return unescapeForEncodeUriCompatability(text.toString());

    }

  }





  /**

   * Unescape selected chars for compatability with JavaScript's encodeURI.

   * In speed critical applications this could be dropped since the

   * receiving application will certainly decode these fine.

   * Note that this function is case-sensitive.  Thus "%3f" would not be

   * unescaped.  But this is ok because it is only called with the output of

   * URLEncoder.encode which returns uppercase hex.

   *

   * Example: "%3F" -> "?", "%24" -> "$", etc.

   *

   * @param str The string to escape.

   * @return The escaped string.

   */

  private static String unescapeForEncodeUriCompatability(String str) {

    return str.replace("%21", "!").replace("%7E", "~")

        .replace("%27", "'").replace("%28", "(").replace("%29", ")")

        .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?")

        .replace("%3A", ":").replace("%40", "@").replace("%26", "&")

        .replace("%3D", "=").replace("%2B", "+").replace("%24", "$")

        .replace("%2C", ",").replace("%23", "#");

  }

}

 

你可能感兴趣的:(Google)