<2012 12 02> linux下利用valgrind工具进行内存泄露检测和性能分析

本文转自 http://blog.csdn.net/yanghao23/article/details/7514587

valgrind通常用来成分析程序性能及程序中的内存泄露错误

 

一 Valgrind工具集简绍

Valgrind包含下列工具:

    1、memcheck:检查程序中的内存问题,如泄漏、越界、非法指针等。

    2、callgrind:检测程序代码的运行时间和调用过程,以及分析程序性能。

    3、cachegrind:分析CPU的cache命中率、丢失率,用于进行代码优化。

    4、helgrind:用于检查多线程程序的竞态条件。

    5、massif:堆栈分析器,指示程序中使用了多少堆内存等信息。

    6、lackey:

    7、nulgrind:

这几个工具的使用是通过命令:valgrand --tool=name 程序名来分别调用的,当不指定tool参数时默认是 --tool=memcheck

 

二 Valgrind工具详解

1.Memcheck

    最常用的工具,用来检测程序中出现的内存问题,所有对内存的读写都会被检测到,一切对malloc、free、new、delete的调用都会被捕获。所以,它能检测以下问题:

       1、对未初始化内存的使用;

       2、读/写释放后的内存块;

       3、读/写超出malloc分配的内存块;

       4、读/写不适当的栈中内存块;

       5、内存泄漏,指向一块内存的指针永远丢失;

       6、不正确的malloc/free或new/delete匹配;

       7、memcpy()相关函数中的dst和src指针重叠。

这些问题往往是C/C++程序员最头疼的问题,Memcheck能在这里帮上大忙。
例如:

#include <stdlib.h>  
#include <malloc.h>  
#include <string.h>  
  
void test()  
{  
    int *ptr = malloc(sizeof(int)*10);  
  
    ptr[10] = 7; // 内存越界  
  
    memcpy(ptr +1, ptr, 5); // 踩内存  
  
  
    free(ptr);   
    free(ptr);// 重复释放  
  
    int *p1;  
    *p1 = 1; // 非法指针  
}  
  
int main(void)  
{  
    test();  
    return 0;  
}  
 

将程序编译生成可执行文件后执行:valgrind --leak-check=full ./程序名

 

输出结果如下:

==4832== Memcheck, a memory error detector
==4832== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==4832== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==4832== Command: ./tmp
==4832== 
==4832== Invalid write of size 4      // 内存越界
==4832==    at 0x804843F: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==  Address 0x41a6050 is 0 bytes after a block of size 40 alloc'd
==4832==    at 0x4026864: malloc (vg_replace_malloc.c:236)
==4832==    by 0x8048435: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832== 
==4832== Source and destination overlap in memcpy(0x41a602c, 0x41a6028, 5) // 踩内存
==4832==    at 0x4027BD6: memcpy (mc_replace_strmem.c:635)
==4832==    by 0x8048461: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832== 
==4832== Invalid free() / delete / delete[] // 重复释放
==4832==    at 0x4025BF0: free (vg_replace_malloc.c:366)
==4832==    by 0x8048477: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==  Address 0x41a6028 is 0 bytes inside a block of size 40 free'd
==4832==    at 0x4025BF0: free (vg_replace_malloc.c:366)
==4832==    by 0x804846C: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832== 
==4832== Use of uninitialised value of size 4 // 非法指针
==4832==    at 0x804847B: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832== 
==4832== 
==4832== Process terminating with default action of signal 11 (SIGSEGV) //由于非法指针赋值导致的程序崩溃
==4832==  Bad permissions for mapped region at address 0x419FFF4
==4832==    at 0x804847B: test (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832==    by 0x804848D: main (in /home/yanghao/Desktop/testC/testmem/tmp)
==4832== 
==4832== HEAP SUMMARY:
==4832==     in use at exit: 0 bytes in 0 blocks
==4832==   total heap usage: 1 allocs, 2 frees, 40 bytes allocated
==4832== 
==4832== All heap blocks were freed -- no leaks are possible
==4832== 
==4832== For counts of detected and suppressed errors, rerun with: -v
==4832== Use --track-origins=yes to see where uninitialised values come from
==4832== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 11 from 6)
Segmentation fault

从valgrind的检测输出结果看,这几个错误都找了出来。

 

2.Callgrind

    和gprof类似的分析工具,但它对程序的运行观察更是入微,能给我们提供更多的信息。和gprof不同,它不需要在编译源代码时附加特殊选项,但加上调试选项是推荐的。Callgrind收集程序运行时的一些数据,建立函数调用关系图,还可以有选择地进行cache模拟。在运行结束时,它会把分析数据写入一个文件。callgrind_annotate可以把这个文件的内容转化成可读的形式。

生成可视化的图形需要下载gprof2dot:http://jrfonseca.googlecode.com/svn/trunk/gprof2dot/gprof2dot.py

这是个python脚本,把它下载之后修改其权限chmod +7 gprof2dot.py ,并把这个脚本添加到$PATH路径中的任一文件夹下,我是将它放到了/usr/bin目录下,这样就可以直接在终端下执行gprof2dot.py了。

   Callgrind可以生成程序性能分析的图形,首先来说说程序性能分析的工具吧,通常可以使用gnu自带的gprof,它的使用方法是:在编译程序时添加-pg参数,例如:

#include <stdio.h>  
#include <malloc.h>  
void test()  
{  
    sleep(1);  
}  
void f()  
{  
    int i;  
    for( i = 0; i < 5; i ++)  
        test();  
}  
int main()  
{  
    f();  
    printf("process is over!\n");  
    return 0;  
}  
 

首先执行 gcc -pg -o tmp tmp.c,然后运行该程序./tmp,程序运行完成后会在当前目录下生成gmon.out文件(这个文件gprof在分析程序时需要),
再执行gprof ./tmp | gprof2dot.py |dot -Tpng -o report.png,打开report.png结果:

 <2012 12 02> linux下利用valgrind工具进行内存泄露检测和性能分析_第1张图片

显示test被调用了5次,程序中耗时所占百分比最多的是test函数。

再来看 Callgrind的生成调用图过程吧,执行:valgrind --tool=callgrind ./tmp,执行完成后在目录下生成"callgrind.out.XXX"的文件这是分析文件,可以直接利用:callgrind_annotate callgrind.out.XXX 打印结果,也可以使用:gprof2dot.py -f callgrind callgrind.out.XXX |dot -Tpng -o report.png 来生成图形化结果:<2012 12 02> linux下利用valgrind工具进行内存泄露检测和性能分析_第2张图片

它生成的结果非常详细,甚至连函数入口,及库函数调用都标识出来了。

 

3.Cachegrind

       Cache分析器,它模拟CPU中的一级缓存I1,Dl和二级缓存,能够精确地指出程序中cache的丢失和命中。如果需要,它还能够为我们提供cache丢失次数,内存引用次数,以及每行代码,每个函数,每个模块,整个程序产生的指令数。这对优化程序有很大的帮助。

    作一下广告:valgrind自身利用该工具在过去几个月内使性能提高了25%-30%。据早先报道,kde的开发team也对valgrind在提高kde性能方面的帮助表示感谢。

它的使用方法也是:valgrind --tool=cachegrind 程序名,

4.Helgrind

    它主要用来检查多线程程序中出现的竞争问题。Helgrind寻找内存中被多个线程访问,而又没有一贯加锁的区域,这些区域往往是线程之间失去同步的地方,而且会导致难以发掘的错误。Helgrind实现了名为“Eraser”的竞争检测算法,并做了进一步改进,减少了报告错误的次数。不过,Helgrind仍然处于实验阶段。

首先举一个竞态的例子吧:

 

 

#include <stdio.h>  
#include <pthread.h>  
#define NLOOP 50  
int counter = 0; /* incremented by threads */  
void *threadfn(void *);  
  
int main(int argc, char **argv)  
{  
    pthread_t tid1, tid2,tid3;  
  
  
    pthread_create(&tid1, NULL, &threadfn, NULL);  
    pthread_create(&tid2, NULL, &threadfn, NULL);  
    pthread_create(&tid3, NULL, &threadfn, NULL);  
  
  
    /* wait for both threads to terminate */  
    pthread_join(tid1, NULL);  
    pthread_join(tid2, NULL);  
    pthread_join(tid3, NULL);  
  
  
    return 0;  
}  
  
void *threadfn(void *vptr)  
{  
      int i, val;  
      for (i = 0; i < NLOOP; i++) {  
    val = counter;  
    printf("%x: %d \n", (unsigned int)pthread_self(),  val+1);  
    counter = val+1;  
      }  
      return NULL;  
}  

这段程序的竞态在30~32行,我们想要的效果是3个线程分别对全局变量累加50次,最后全局变量的值为150,由于这里没有加锁,很明显竞态使得程序不能达到我们的目标。我们来看Helgrind是如何帮我们检测到竞态的。先编译程序:gcc -o test thread.c -lpthread ,然后执行:valgrind --tool=helgrind ./test 输出结果如下:

49c0b70: 1 
49c0b70: 2 
==4666== Thread #3 was created
==4666==    at 0x412E9D8: clone (clone.S:111)
==4666==    by 0x40494B5: pthread_create@@GLIBC_2.1 (createthread.c:256)
==4666==    by 0x4026E2D: pthread_create_WRK (hg_intercepts.c:257)
==4666==    by 0x4026F8B: pthread_create@* (hg_intercepts.c:288)
==4666==    by 0x8048524: main (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666== 
==4666== Thread #2 was created
==4666==    at 0x412E9D8: clone (clone.S:111)
==4666==    by 0x40494B5: pthread_create@@GLIBC_2.1 (createthread.c:256)
==4666==    by 0x4026E2D: pthread_create_WRK (hg_intercepts.c:257)
==4666==    by 0x4026F8B: pthread_create@* (hg_intercepts.c:288)
==4666==    by 0x8048500: main (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666== 
==4666== Possible data race during read of size 4 at 0x804a028 by thread #3
==4666==    at 0x804859C: threadfn (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666==    by 0x4026F60: mythread_wrapper (hg_intercepts.c:221)
==4666==    by 0x4048E98: start_thread (pthread_create.c:304)
==4666==    by 0x412E9ED: clone (clone.S:130)
==4666==  This conflicts with a previous write of size 4 by thread #2
==4666==    at 0x80485CA: threadfn (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666==    by 0x4026F60: mythread_wrapper (hg_intercepts.c:221)
==4666==    by 0x4048E98: start_thread (pthread_create.c:304)
==4666==    by 0x412E9ED: clone (clone.S:130)
==4666== 
==4666== Possible data race during write of size 4 at 0x804a028 by thread #2
==4666==    at 0x80485CA: threadfn (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666==    by 0x4026F60: mythread_wrapper (hg_intercepts.c:221)
==4666==    by 0x4048E98: start_thread (pthread_create.c:304)
==4666==    by 0x412E9ED: clone (clone.S:130)
==4666==  This conflicts with a previous read of size 4 by thread #3
==4666==    at 0x804859C: threadfn (in /home/yanghao/Desktop/testC/testmem/a.out)
==4666==    by 0x4026F60: mythread_wrapper (hg_intercepts.c:221)
==4666==    by 0x4048E98: start_thread (pthread_create.c:304)
==4666==    by 0x412E9ED: clone (clone.S:130)
==4666== 
49c0b70: 3 
......
55c1b70: 51 
==4666== 
==4666== For counts of detected and suppressed errors, rerun with: -v
==4666== Use --history-level=approx or =none to gain increased speed, at
==4666== the cost of reduced accuracy of conflicting-access information
==4666== ERROR SUMMARY: 8 errors from 2 contexts (suppressed: 99 from 31)

helgrind成功的找到了竞态的所在位置,标红所示。

 

5. Massif

    堆栈分析器,它能测量程序在堆栈中使用了多少内存,告诉我们堆块,堆管理块和栈的大小。Massif能帮助我们减少内存的使用,在带有虚拟内存的现代系统中,它还能够加速我们程序的运行,减少程序停留在交换区中的几率。

       Massif对内存的分配和释放做profile。程序开发者通过它可以深入了解程序的内存使用行为,从而对内存使用进行优化。这个功能对C++尤其有用,因为C++有很多隐藏的内存分配和释放。

 

此外,lackey和nulgrind也会提供。Lackey是小型工具,很少用到;Nulgrind只是为开发者展示如何创建一个工具。我们就不做介绍了。

三 使用Valgrind

       Valgrind使用起来非常简单,你甚至不需要重新编译你的程序就可以用它。当然如果要达到最好的效果,获得最准确的信息,还是需要按要求重新编译一下的。比如在使用memcheck的时候,最好关闭优化选项。

       valgrind命令的格式如下:

       valgrind [valgrind-options] your-prog [your-prog options]

一些常用的选项如下:

选项

作用

-h --help

显示帮助信息。

--version

显示valgrind内核的版本,每个工具都有各自的版本。

-q --quiet

安静地运行,只打印错误信息。

-v --verbose

打印更详细的信息。

--tool=<toolname> [default: memcheck]

最常用的选项。运行valgrind中名为toolname的工具。如果省略工具名,默认运行memcheck。

--db-attach=<yes|no> [default: no]

绑定到调试器上,便于调试错误。

本文部分参考http://www.cnblogs.com/wangkangluo1/archive/2011/07/20/2111248.html

你可能感兴趣的:(linux)