A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
思路:本题意思是通过向下走或者向右走到达Finish,我们可以抽象一下,到达(i,j)点必通过(i-1,j)或者(i,j-1).所以使用result[i][j]表示到达(i,j)有多少中方法,故result[i][j]=result[i-1][j]+result[i][j-1];
class Solution { public: int uniquePaths(int m, int n) { int result[m][n]; for(int i=0;i<m;i++) result[i][0]=1; for(int j=0;j<n;j++) result[0][j]=1; for(int i=1;i<m;i++) { for(int j=1;j<n;j++) { result[i][j]=result[i-1][j]+result[i][j-1]; } } return result[m-1][n-1]; } };