- 构建下一代云原生大模型多租户平台:架构设计与关键挑战
慌ZHANG
人工智能云原生后端云原生人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:从单用户部署到多租户平台的转型趋势随着开源大语言模型(LLM)能力日益强大,企业部署与应用大模型已从“验证可行性”的早期阶段,逐步迈向“规模化服务”的中后期阶段。在这一背景下,“多租户”成为企业级AI平台建设的核心议题之一:SaaS平台希望一个模型服务多个客户;大企业希望多个部门共享模型资源但相互隔离;教育、医疗等敏感行业需要更精细的数据与
- vLLM调度部署Qwen3
你好,此用户已存在
人工智能linux大模型
vLLM介绍在之前的文章中,我们介绍了如何使用ollama部署qwen3,一般而言,ollama适合个人部署使用,在面对企业级的模型部署时,一般更建议使用vLLMvLLM(高效大语言模型推理库)是一个专为大语言模型(LLMs)优化推理速度的开源框架,由斯坦福大学系统研究组开发。其核心目标是通过创新的软件和算法设计,大幅提升LLM在生成文本时的吞吐量和效率,尤其适用于处理高并发的推理请求。从各种基准
- 初学Spring AI 笔记
笑衬人心。
大模型学习spring人工智能笔记
目录SpringAI简介依赖与环境配置基础概念集成OpenAI(或其他LLM提供商)Prompt模板引擎Embedding与向量数据库SpringAIChatClient使用SpringAI和LangChain对比常见问题与建议SpringAI简介SpringAI是Spring团队推出的人工智能集成框架,旨在简化AI模型(如OpenAI、HuggingFace、Mistral、AzureOpenA
- 基于langchain的法律助手工作流的搭建
一尾清风915
langchain语言模型python人工智能chatgptai
该工作流有四个llm组成,包括三个worker以及一个planner。planner用于识别用户输入,将其划分为具体任务并调用相应的worker。worker则根据输入进行工作,三个worker分别用于法条翻译,法条查询以及案例分析。其中planner、lawtrans、lasearch使用的都是gpt4,embedding模型使用的是openai的text-embedding-ada-002。c
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- 智能新纪元:大语言模型如何重塑电商“人货场”经典范式
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
开篇引言“善战者,求之于势,不责于人。”——《孙子兵法·兵势篇》当全球电商交易额突破6.3万亿美元(Statista2024),增长引擎却显露疲态。流量红利消退、同质化竞争加剧、消费者需求碎片化——传统“人货场”理论正遭遇前所未有的挑战。而大语言模型(LLM)的出现,恰似一柄重铸商业逻辑的“科技之锤”,正在为电商领域开启一场静水深流的革命性变革。基石重塑:当“人货场”遇见大模型智能经典理论再审视:
- AI:微调框架 LLaMA-Factory(Large Language Model Factory)
xyzroundo
AI人工智能llama语言模型sftllama-factoryAI
LLaMA-Factory(LargeLanguageModelFactory)是由北航团队开源的高效大语言模型(LLM)微调框架,旨在简化大型语言模型的定制化训练流程,支持超过100种主流模型和多种先进微调技术。以下从核心功能、安装部署、微调流程和应用场景四个方面详细介绍:一、核心功能与特点广泛的模型支持支持LLaMA3、Mistral、Qwen、ChatGLM、Gemma、Phi、Yi、Bai
- 大模型系列——提示词工程:从原理、实践到未来的一部系统性综述
猫猫姐
大模型人工智能大模型提示词
提示词工程:从原理、实践到未来的一部系统性综述摘要本文系统性地阐述了提示词工程(PromptEngineering)这一关键领域,它作为释放大语言模型(LLM)潜能的核心人机交互范式。报告从LLM的“下一个词预测”基本机制出发,追溯了提示词工程从GPT-3时代“上下文学习”的偶然发现到当前系统化、工程化的演进历程。本文深度剖析了多种高级提示框架,包括旨在激发模型逐步推理的“思维链”(Chain-o
- 【知识图谱构建系列1】数据集介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱
文章目录项目简介数据集简介数据集核心内容应用与影响小细节参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/项目简介我们所要学习的项目(LLM4KGC)聚焦于利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KnowledgeGraph,T2KG)的自动化构建,旨在探索高效可靠的知识
- LangChain4j -- ChatMemory
大白鹅~
javaai
ChatMemory和持久化存储管理并手动维护ChatMessages管理和手动维护ChatMessages是繁琐的工作,因此LangChain4j提供了一个名为ChatMemory的抽象层,以及多个开箱即用的实现。ChatMemory可以用作独立的底层组件,也可以作为高层次组件如AI服务的一部分使用。ChatMemory的主要功能驱逐策略:为了适应LLM的上下文窗口限制、控制成本和延迟。持久化:
- 面经总结系列(十六): 元象科技大模型推理优化工程师
GoAI
AI面经总结机器学习算法人工智能大模型机器学习深度学习
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️点击链接加群。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的
- 《深入浅出多模态》(四):多模态经典模型CLIP
GoAI
深入浅出多模态多模态大模型LLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 深入浅出多模态》(十一)之多模态经典模型:Flamingo系列
GoAI
机器学习多模态大模型人工智能LLM机器学习
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:本作
- MCP vs LangChain:标准化协议与开发框架的优劣对比
guohuang
MCP人工智能深度学习大模型
随着大型语言模型(LLM)技术的迅速发展,开发者需要高效的工具来构建基于LLM的应用。MCP(ModelContextProtocol)和LangChain作为两种主流解决方案,各有优缺点。本文将从技术入门者的角度,对这两种技术进行深入对比分析。1.概述MCP:标准化协议MCP(ModelContextProtocol)是由Anthropic提出的一种标准化协议,旨在统一大模型API的调用方式,简
- LangGraph深度解析:构建持久化、可观测的智能体工作流
kakaZhui
大模型Agent入门与代码实战AIGCLLM人工智能AgentMcp
一、项目概述与技术定位1.1LangGraph核心价值LangGraph是由LangChain团队推出的开源框架(GitHub仓库:https://github.com/langchain-ai/langgraph),专为构建持久化、状态化的智能体工作流设计。作为LangChain生态系统的战略补充,它解决了传统LLM应用在以下方面的关键痛点:持久化执行:支持长时间运行(数小时/天级)的工作流,故
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- 通过本地LLM搭建本地RAG
TBM矩阵
#AI体系学习人工智能
整体思路通过ollama下载并搭建本地大预言模型LLM。通过ollama搭建embedding模型。通过langchain文件加载器加载本地内容文件(PDF文件)。通过langchain调用embedding模型进行向量存储和RAG检索。通过langchainprompts实现提示词工程。通过langchain调用LLM模型实现RAG生成,完成对本地文件的分析。准备环境服务器:CentOSLinu
- 微调大语言模型后,如何评估效果?一文讲清
茫茫人海一粒沙
人工智能
在做大语言模型(LLM)微调时,“怎么判断模型调得好不好”是必须回答的问题。无论是在研究、项目落地,还是面试中,评估方法都不能停留在“训练loss降了”这么简单。本文从评估目标、技术指标、业务适配、实战建议四个维度,讲清楚微调后的模型评估怎么做,为什么这么做。一,评估前,先搞清楚目标不同的微调目的,评估方式也不同:✅精调任务能力:判断模型是否更好完成分类、问答、摘要、代码生成等任务。✅领域适应:关
- 本地运行大型语言模型(LLM)的实践指南
yunwu12777
语言模型人工智能自然语言处理
技术背景介绍近年来,项目如llama.cpp、Ollama、GPT4All等的流行标志着在本地设备上运行大型语言模型(LLM)的需求日益增长。选择在本地运行LLM,至少有两个重要的好处:隐私和成本。隐私上,数据不需要发送到第三方,避免了商业服务条款的限制;成本方面,无需支付推理费用,尤其是对于那些需要大量计算的应用,如长时间的模拟和总结。核心原理解析在本地运行LLM,需要准备以下几个条件:开源LL
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- Spring AI 结合 MCP MySQL 实现对话式数据库查询
没刮胡子
软件开发技术实战专栏人工智能AISpring数据库spring人工智能spring-aimcp-servermysql
在现代应用开发中,将人工智能与数据库查询结合可以创造更自然、更智能的用户交互方式。下面我将详细介绍如何使用SpringAI框架结合MCP(可能指MySQL连接池或相关组件)实现对话中的数据库查询功能。什么是SpringAI和MCPMySQLSpringAI框架概述SpringAI是基于Spring生态的人工智能集成框架,它提供了:与大型语言模型(LLM)的集成能力对话管理和自然语言处理功能业务逻辑
- 构建智能对话式BI的关键:ChatBI场景下的Agent框架选型深
写在前面在数据驱动决策的时代,商业智能(BI)工具扮演着至关重要的角色。然而,传统BI工具往往需要用户具备一定的SQL知识或熟悉复杂的操作界面。对话式BI(ChatBI)的出现,旨在通过自然语言交互,让任何人都能轻松获取数据洞察,极大降低了数据分析的门槛。构建一个强大、灵活且可扩展的ChatBI应用,其核心离不开一个合适的Agent框架。Agent框架如同应用的“龙骨”,为LLM赋予了感知、思考、
- 【LangChain】langchain.chains.create_sql_query_chain() 函数:基于自然语言生成 SQL 查询的链(Chain)
彬彬侠
LangChainlangchainchainscreate_sql_quersql_databasesql
langchain.chains.create_sql_query_chain函数是LangChain库中的一个函数,用于创建基于自然语言生成SQL查询的链(Chain),结合语言模型(LLM)和数据库上下文生成可执行的SQL语句。本文基于LangChain0.3.x,详细介绍create_sql_query_chain的定义、参数、方法和典型场景,并提供一个独立示例,展示如何使用create_s
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- Promptify与ReActAgent
frostmelody
人工智能
一、Promptify定位:NLP任务的「自动化流水线」1.解决什么问题?传统LLM应用开发痛点:反复调试:需手工编写/调整prompt格式(如调整分隔符、示例数量)兼容性差:不同模型需重写适配代码输出不稳定:非结构化文本需额外解析Promptify用标准化流水线解决上述问题,将复杂prompt工程简化为三行代码:model=OpenAI(api_key)#选择模型prompter=Prompte
- 大模型系列——Ollama WebUI 简明教程
猫猫姐
大模型大模型人工智能
大模型系列——OllamaWebUI简明教程OpenWebUI,以前称为OllamaWebUI,支持各种大型语言模型(LLM)运行器,是本地部署并与语言模型交互的多功能工具。OpenWebUI,以前称为OllamaWebUI,是一个可扩展、功能丰富且用户友好的自托管Web界面,旨在完全离线运行。它支持各种大型语言模型(LLM)运行器,使其成为部署和与语言模型交互的多功能工具。OpenWebUI提供
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option