POJ 3260 The Fewest Coins(完全背包 + 多重背包 + 单调队列优化)

题意:

John去买东西,东西的价格是T(1 <= T <= 10000),John所在的地方有n(1 <= n <= 100)种的硬币,面值分别为V1, V2, ..., Vn (1 <= Vi <= 120)。John带了C1枚面值为V1的硬币,C2枚面值为V2的硬币,...,Cn枚面值为Vn的硬币(0 <= Ci <= 10000)。售货员那里每种硬币都有无限多个。问为了支付这个T,John给售货员的硬币数目加上售货员找回的零钱的硬币数目最少是多少。如果无法支付T,输出-1 。

思路:

1. 和 POJ 1252 类似,只不过这次对于找零变成了完全背包,相对来说复杂度减少了一点点。

2. 问题的难点在于如何确定背包容量的上限,看到 discuss 上有人说 T + vmax * vmax 是上限,其实再把 vmax /= 2 也是可以的。

3. 多重背包 + 倍增优化是可以做的,最近在学习单调队列,顺便就用单调队列优化了下,16ms,真心膜拜 0ms 的大神。

4. 单调队列优化的时候,用 二分搜索 反而比 从后往前遍历 要慢,可能是数据的原因吧,有关单调队列的性质还有待于慢慢理解。

 

#include <iostream>

#include <algorithm>

using namespace std;



const int MAXD = 10010;

const int MAXN = 150;

const int INFS = 0x3fffffff;



int dp[MAXD << 2], A[MAXD << 2], B[MAXD << 2];

int V[MAXN], C[MAXN];



void ZeroOnePack(int w, int val, int vol)

{

    for (int v = vol; v >= w; --v)

        if (dp[v - w] != INFS)

            dp[v] = min(dp[v], dp[v - w] + val);

}



void CompletePack(int w, int val, int vol)

{

    for (int v = w; v <= vol; ++v)

        if (dp[v - w] != INFS)

            dp[v] = min(dp[v], dp[v - w] + val);

}



inline int BinarySearch(int arr[], int l, int r, int val)

{

    while (l <= r)

    {

        int m = (l + r) >> 1;

        if (arr[m] > val)

            r = m - 1;

        else

            l = m + 1;

    }

    return l - 1;

}



void MultiplePack(int w, int val, int n, int vol)

{

    if (n == 1)

    {

        ZeroOnePack(w, val, vol);

        return ;

    }

    if (w * n >= vol)

    {

        CompletePack(w, val, vol);

        return ;

    }



    for (int rem = 0; rem < w; ++rem)

    {

        int la = 0, ra = -1;

        int lb = 0, rb = -1;

        for (int v = rem, i = 0; v <= vol; v += w, ++i)

        {

            if (la + n == ra && A[la] == B[lb])

                ++la, ++lb;

            else if (la + n == ra)

                ++la;



            ++ra;

            if (dp[v] != INFS)

                A[ra] = dp[v] - i * val;

            else

                A[ra] = INFS;



            //while (lb <= rb && A[ra] < B[rb])

            // --rb;



            if (lb <= rb)

                rb = BinarySearch(B, lb, rb, A[ra]);

            B[++rb] = A[ra];



            dp[v] = min(dp[v], B[lb] + i * val) ;

        }

    }

}



int main()

{

    int n, vol;

    while (scanf("%d %d", &n, &vol) != EOF)

    {

        int vmax = 0;

        for (int i = 0; i < n; ++i)

        {

            scanf("%d", &V[i]);

            vmax = max(vmax, V[i]);

        }

        for (int i = 0; i < n; ++i)

            scanf("%d", &C[i]);



        vmax >>= 1;

        vmax *= vmax;

        vmax += vol;



        dp[0] = 0;

        for (int v = 1; v <= vmax; ++v)

            dp[v] = INFS;



        for (int i = 0; i < n; ++i)

            MultiplePack(V[i], 1, C[i], vmax);



        for (int i = 0; i < n; ++i)

            for (int v = vmax - V[i]; v >= 0; --v)

                dp[v] = min(dp[v], dp[v + V[i]] + 1);



        if (dp[vol] != INFS)

            printf("%d\n", dp[vol]);

        else

            printf("-1\n");

    }

    return 0;

}

 

你可能感兴趣的:(poj)