亚博microros小车-原生ubuntu支持系列:7-脸部检测

背景知识

官网介绍:

Face Mesh - mediapipe 

亚博microros小车-原生ubuntu支持系列:7-脸部检测_第1张图片

mpFaceMesh.FaceMesh() 类的参数有:self.staticMode, self.maxFaces, self.minDetectionCon, self.minTrackCon

    staticMode:是否将每帧图像作为静态图像处理。如果为 True,每帧都会进行人脸检测;如果为 False,在检测到人脸后进行跟踪,速度更快
    maxFaces:要检测的最大人脸数量
    minDetectionCon:检测的最小置信度阈值。低于此值的人脸将被忽略
    minTrackCon:跟踪的最小置信度阈值。低于此值的跟踪将被忽略

import cv2
import mediapipe as mp

mp_drawing = mp.solutions.drawing_utils#绘图工具
mp_facemesh = mp.solutions.face_mesh
#手部模型
faceMesh = mp_facemesh.FaceMesh(
        static_image_mode=False,
        max_num_faces=2,
        min_detection_confidence=0.75,
        min_tracking_confidence=0.75)

cap = cv2.VideoCapture(0)#打开默认摄像头
while True:
    ret,frame = cap.read()#读取一帧图像
    #图像格式转换
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    # 因为摄像头是镜像的,所以将摄像头水平翻转
    # 不是镜像的可以不翻转
    frame= cv2.flip(frame,1)
    #输出结果
    results = faceMesh.process(frame)
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

    if results.multi_face_landmarks:
      for face_landmarks in results.multi_face_landmarks:
        # 关键点可视化
        mp_drawing.draw_landmarks(
            frame, face_landmarks, mp_facemesh.FACEMESH_CONTOURS)
    cv2.imshow('MediaPipe face', frame)
    if cv2.waitKey(1) & 0xFF == 27:
        break
cap.release()

这几个基本格式类似的,就是换个模型,输出结果不同

效果:

亚博microros小车-原生ubuntu支持系列:7-脸部检测_第2张图片

脸部检测

src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件04_FaceMesh.py

代码如下

#!/usr/bin/env python3
# encoding: utf-8
#import ros lib
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Point
import mediapipe as mp
#import define msg
from yahboomcar_msgs.msg import PointArray
#import commom lib
import cv2 as cv
import numpy as np
import time
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImage

from rclpy.time import Time
import datetime

print("import done")


class FaceMesh(Node):
    def __init__(self, name,staticMode=False, maxFaces=2, minDetectionCon=0.5, minTrackingCon=0.5):
        super().__init__(name)
        self.mpDraw = mp.solutions.drawing_utils#画图
        self.mpFaceMesh = mp.solutions.face_mesh
        #模型初始化
        self.faceMesh = self.mpFaceMesh.FaceMesh(
            static_image_mode=staticMode,
            max_num_faces=maxFaces,
            min_detection_confidence=minDetectionCon,
            min_tracking_confidence=minTrackingCon )
        self.pub_point = self.create_publisher(PointArray,'/mediapipe/points',1000)
        self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=3)
        self.drawSpec = self.mpDraw.DrawingSpec(color=(0, 255, 0), thickness=1, circle_radius=1)

    def pubFaceMeshPoint(self, frame, draw=True):
        pointArray = PointArray()
        img = np.zeros(frame.shape, np.uint8)
        imgRGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        self.results = self.faceMesh.process(imgRGB)#检测
        if self.results.multi_face_landmarks:
            for i in range(len(self.results.multi_face_landmarks)):#输出关键点
                if draw: self.mpDraw.draw_landmarks(frame, self.results.multi_face_landmarks[i], self.mpFaceMesh.FACEMESH_CONTOURS, self.lmDrawSpec, self.drawSpec)
                self.mpDraw.draw_landmarks(img, self.results.multi_face_landmarks[i], self.mpFaceMesh.FACEMESH_CONTOURS, self.lmDrawSpec, self.drawSpec)
                for id, lm in enumerate(self.results.multi_face_landmarks[i].landmark):
                        point = Point()
                        point.x, point.y, point.z = lm.x, lm.y, lm.z
                        pointArray.points.append(point)
        self.pub_point.publish(pointArray)
        return frame, img

    def frame_combine(slef,frame, src):
        if len(frame.shape) == 3:
            frameH, frameW = frame.shape[:2]
            srcH, srcW = src.shape[:2]
            dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        else:
            src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
            frameH, frameW = frame.shape[:2]
            imgH, imgW = src.shape[:2]
            dst = np.zeros((frameH, frameW + imgW), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        return dst

class MY_Picture(Node):
    def __init__(self, name):
        super().__init__(name)
        self.bridge = CvBridge()
        self.sub_img = self.create_subscription(
            CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像

        self.last_stamp = None
        self.new_seconds = 0
        self.fps_seconds = 1
        self.face_mesh = FaceMesh('face_mesh')

    def handleTopic(self, msg):
        self.last_stamp = msg.header.stamp  
        if self.last_stamp:
            total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanoseconds
            delta = datetime.timedelta(seconds=total_secs * 1e-9)
            seconds = delta.total_seconds()*100

            if self.new_seconds != 0:
                self.fps_seconds = seconds - self.new_seconds

            self.new_seconds = seconds#保留这次的值

        start = time.time()
        frame = self.bridge.compressed_imgmsg_to_cv2(msg)
        frame = cv.resize(frame, (640, 480))
        cv.waitKey(10)
        frame, img = self.face_mesh.pubFaceMeshPoint(frame,draw=False)
        
        end = time.time()
        fps = 1 / ((end - start)+self.fps_seconds)
        text = "FPS : " + str(int(fps))
        cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)

        dist = self.face_mesh.frame_combine(frame, img)
        cv.imshow('dist', dist)
        # print(frame)
    
        cv.waitKey(10)

def main():
    print("start it")
    rclpy.init()
    esp_img = MY_Picture("My_Picture")
    try:
            rclpy.spin(esp_img)
    except KeyboardInterrupt:
        pass
    finally:
        esp_img.destroy_node()
        rclpy.shutdown()

订阅esp32传出来的图像后,通过MediaPipe去做相关的识别后显示。主体流程跟之前一样,换了检测模型。

构建后运行:ros2 run yahboom_esp32_mediapipe FaceMesh

效果如下

 亚博microros小车-原生ubuntu支持系列:7-脸部检测_第3张图片

你可能感兴趣的:(ubuntu,计算机视觉,opencv,亚博,microros,facemesh)