【大语言模型LangChain】 ModelsIO OutputParsers详解

【大语言模型LangChain】 ModelsIO OutputParsers详解_第1张图片


【大语言模型LangChain】 ModelsIO OutputParsers详解

  • 一、简介
  • 二、OutputParsers 的优势
  • 三、解析器类型
  • 四、实战示例
    • 1、String 解析器
    • 2、Json 解析器
    • 3、Pydantic 解析器
    • 4、结构化输出解析器
    • 5、OpenAI 函数输出解析器
      • 5.1、JsonOutputFunctionsParser
      • 5.2、JsonKeyOutputFunctionsParser
      • 5.3、PydanticOutputFunctionsParser
      • 5.4、PydanticAttrOutputFunctionsParser

一、简介

基于前边的章节,LangChain 已经可以轻松实现帮用户拿到大语言模型的输出,然而不难发现,前文介绍的模型调用,显示返回的内容通常是一个类(class)的实例,其中包含了 content 以及其他一些额外的参数。

对于模型调用者来说,他们可能只关心 content 的内容,也就是模型对输入内容的回答,或者希望得到一个可操作的数据结构,比如 JSON 格式的数据。

二、OutputParsers 的优势

LangChain 设计的初衷之一,旨在让用户更便捷地使用大模型,所以为了解决输出内容格式化的问题。

通过使用 LangChain 提供的解析器,用户可以更轻松地获取模型的输出,并直接处理或操作所需的内容,而无需进行额外的转换或处理。

你可能感兴趣的:(人工智能测试开发,语言模型,langchain,android,人工智能,python)