- 本地部署model scope魔搭大模型流程
CQller
python算法深度学习机器学习jupyterpytorch
一、安装python二、安装Gradio三、添加镜像加速四、运行字符串倒叙五、运行绘图六、安装常用软件包和库七、我目前使用的软件包和库简介八、文字生成图片AI模型九、文字回复AI模型一、安装python可参考安装步骤:python学习笔记-python安装与环境变量配置_python环境变量-CSDN博客二、安装Gradio在cmd执行以下命令。Gradio封装了功能丰富的前端用户界面,一会儿用来
- 清华发布:DeepSeek学习教程ppt 104页完整版免费分享
2501_90649720
人工智能学习
最近国产DeepSeek火出圈,其出色的性能和巨大的潜力引得各路资本巨头蜂蛹而入,纷纷与其合作。红遍世界。在DeepSeek火遍世界时,清华大学的博士后团队默默出品了一份名为《DeepSeek:从入门到精通》的ai教学课程。课程一经发布,就引得各个自媒体ai博主的疯传,一度冲上热搜。我专门去看了一下这个教程,确实够硬,够专业,够全面!完整版教程资源我已经帮大家整理好放下面了,大家自行领取。资源链接
- 电脑录屏软件 班迪录屏 Bandicam v8.0 注册版 下载与使用说明
2401_89543598
电脑windows
Bandicam是一款电脑录屏软件。主要功能:多模式录制:支持录制屏幕、游戏画面以及设备内容(如HDMI输入和摄像头)。自由调整录制区域:你可以选择全屏录制,也可以自定义录屏分辨率,满足多种需求。鼠标追随功能:录制时可追随鼠标移动,聚焦特定操作区域。重复捕捉功能:支持反复录制屏幕内容,方便制作教程或解说视频。快捷键设置:自定义快捷键,录制操作更加便捷高效。双音频混合录制:提供同时录制系统音效和麦克
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- GBase 8a数据库多并发insert性能缓慢的优化
GBASE数据库
数据库国产数据库GBaseGBASE南大通用
原文链接:https://www.gbase.cn/community/post/4847更多精彩内容尽在南大通用GBase技术社区,南大通用致力于成为用户最信赖的数据库产品供应商。多并发insert缓慢优化场景分析在业务上或者数据迁移时,经常会出现对同一张表进行多并发的insertvalues操作,GBase8a虽然支持标准的sql插入方式,但同一般的关系型数据库对比,8a的强项在于大事务和大数
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 分析投资策略数据
Young_Zn_Cu
投资策略
投资策略分析(在实习最后一周,当然要再多学一点金融相关知识啦,于是就有了这篇文章,以下均出于个人对投资策略的浅薄见解,欢迎大家提出建议)任务:分析私募排排网上的数据,并根据不同的策略进行分析,写出报告由于本人之前对投资部分了解较少,所以名词解释会占相当大一部分篇幅,大家可以直接移步后面部分!私募投资投资策略分析数据名词解释投资策略名词解释股票策略债券策略期货及衍生品策略多资产策略组合基金对筛选出来
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- 本地搭建deepseek并提供给其它人使用(最全,完整可用)
唐大帅
deepseekdeepseek本地化
最近deepseek非常火,可以称得上是国人的骄傲了。也导致他的网站和api都比较卡。因为是开源的,我们可以很方便的架设其蒸馏模型到自己的主机上。PS:虽然也可以Cpu运行模型,但是如果没有8G以上的显存卡的话,只能搭建7B以下的模型,体验效果并不太好。一、安装Ollama1.1在线安装(推荐方式,需要科学上网)在Ubuntu终端中直接执行下面的命令,下载安装脚本会自动下载适合你系统架构的Olla
- LLM 大模型学习必知必会系列(一):大模型基础知识篇
汀、人工智能
LLM技术汇总人工智能自然语言处理promptRAGLLM模型训练模型部署
LLM大模型学习必知必会系列(一):大模型基础知识篇魔搭ModelScope开源的LLM模型魔搭ModelScope欢迎各个开源的LLM模型在社区上做开源分享。目前社区上已经承载了来自各个机构贡献的不同系列的LLM模型。并且社区的开发者也在这些模型的基础上,贡献了许多创新应用,并在ModelScope的创空间上进行分享。本专题初步梳理了当前社区上一些典型的LLM以及对应的创空间应用,方便大家对于L
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- OpenWebUI,RAG+外部知识库+AI写文的开源应用
m0_74824780
人工智能开源
引言自从去年AI火起来之后,很多人便热衷于寻找适合自用的AI开源项目,把各家大模型API接入到自己的AI程序里,便可以通过AI辅助完成一系列日常任务,比如内容翻译/润色/总结/撰写、格式转换、数据分类、代码分析、角色扮演等等。一般情况下,大模型依靠自身训练数据便能够完成的任务质量偏高,像翻译总结、格式转换之类,市面上所有的AI程序基本都能够满足这一点需求;但是需要结合外部资料/超长上文信息/实时信
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- 基于iNeuOS工业互联网平台的板材实时质检系统
iNeuOS工业互联网
iNeuOS工业互联网人工智能物联网
1.项目背景刨花板生产线由于原料、生产工艺等原因,会有一些产品板面出现颤纹、漏砂、胶斑、胶块、大刨花、粉尘斑、板面划痕和油污等缺陷。表面缺陷会降低板材强度、影响板材外观和二次加工,给企业带来经济损失。目前针对刨花板的瑕疵识别工作主要以人工检测为主,缺陷种类繁多和视觉疲劳导致漏检率和误检率较高,极大限制了工厂的生产效率和产品质量。同时,工厂现有刨花板产线质检环节无法积累生产过程数据、无法形成有效数据
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 时间序列分析之AR、MA、ARMA、ARIMA详解(5)
白马负金羁
机器学习之术协整cointegrationARIMA时间序列分析
在时间序列分析中最常使用的一系列模型:AR、MR、ARMA,一直到ARIMA,都源于乔治·博克斯和格威利姆·詹金斯等人的一系列工作(他们的有关成果后汇集成该领域的权威经典著作【1】)。乔治·博克斯被认为是二十世纪的一代统计学大师,他有一句广为人知的名言:所有的模型都是错误的,但有一些是有用的(“Allmodelsarewrong,butsomeareuseful”)。为了让统计模型发挥作用,深入理
- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- 共享内存的数据结构 ——循环队列+信息量 ——互斥锁、多进程的消费者模型 源码模型 测试代码 C++
sevenysq
数据结构c++centoslinux
前言:简单来说,共享内存不能自动扩展,申请多少就是多少,而且只能用C++内置的数据类型。也不能用STL容器,例如vector会自动扩展,容易造成内存泄漏,越界等问题。移动语义也不能用。要想实现多进程的生产/消费者模型只能采用循环队列。循环队列类值得一提的是这里面头尾指针的移动算法:(指针+1)取最大长度的余数。其他都很简单。#include#include#include#include#incl
- Linux常见的性能优化策略
这多冒昧啊
linux服务器运维
目录1.CPU性能优化:调整进程优先级2.内存优化:禁用透明大页3.磁盘I/O优化:切换I/O调度器4.网络优化:TCP缓冲区调优5.文件句柄优化:高并发API服务器策略总结:1.CPU性能优化:调整进程优先级场景描述:某跨境电商平台在“黑色星期五”大促期间,订单处理系统(Java服务)出现响应延迟。运维团队通过pidstat-u1发现名为log_aggregator的Python日志收集进程(P
- linux内网部署deepseek大模型(ollama+anythingllm)
wukurua
大模型linux大模型人工智能docker
一、安装ollama来源:ollama/docs/linux.mdatmain·ollama/ollama·GitHub1.下载安装包ollama下载链接:https://ollama.com/download/ollama-linux-amd64.tgz,下载后放在用户目录下2.运行脚本#!/bin/sh#ThisscriptinstallsOllamaonLinux.#Itdetectsthe
- DeepSeek大模型本地化部署与实践指南
星辰@Sea
人工智能人工智能DeepSeekAInlp
前言在数据隐私要求严苛或网络环境受限的场景中,本地化部署大模型成为企业AI落地的关键需求。本文将手把手教你如何实现DeepSeek大模型的本地化部署,并提供完整的实践案例代码。部署准备硬件要求配置项推荐规格最低要求GPUNVIDIAA10080Gx4RTX309024GCPUIntelXeonSilver4314i7-12700K内存512GBDDR464GBDDR4存储2TBNVMeSSD512
- 基于DeepSeek-R1的高效推理优化实战:从API封装到动态批处理
竹木有心
人工智能
引言在LLM(大语言模型)应用中,推理延迟和计算资源消耗是核心痛点。本文以DeepSeek-R1-7B模型为例,通过动态批处理、模型量化和异步推理三大技术,将单次推理耗时从2.3s降至0.4s,吞吐量提升6倍。所有代码均通过PyTorch2.1+验证。一、环境准备与模型加载优化1.1硬件感知的模型加载通过device_map自动分配计算资源,避免显存溢出fromtransformersimport
- 使用DeepSeek建立一个智能聊天机器人0.1
yehaiwz
python机器人开发语言
我对代码进行进一步的完善,增加更多的节点连接及功能运用,并确保配置文件config.json的内容更加丰富和详细。以下是完善后的代码和config.json文件内容。完善后的代码importtkinterastkfromtkinterimportscrolledtext,filedialog,messageboximportrequestsimportosimportthreadingimport
- PTA基础编程题目集 7-16 求符合给定条件的整数集
万万没想到,我竟要搬砖
PTA基础编程题目集笔记c语言算法
题目思路见注释7-16求符合给定条件的整数集(15分)给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。输入格式:输入在一行中给出A。输出格式:输出满足条件的的3位数,要求从小到大,每行6个整数。整数间以空格分隔,但行末不能有多余空格。输入样例:2输出样例:2342352432452532543243253423453523544234254324354
- 2025年智算中心的建设成本及优化策略,以DeepSeek为鉴
数据中心运维高级工程师
运维大数据ai大数据
引言近期DeepSeek的爆火引发了行业对智算中心建设的重新思考。据行业数据显示,目前国内智算中心的机房出租率普遍较低,算力资源过剩现象严重。在这种背景下,如何在控制成本的同时,实现智算中心的高效建设和可持续运营,成为行业亟待解决的问题。本文将详细探讨智算中心的建设成本及优化策略,涵盖适用范围、遵循标准、智算中心定义、成本关键组成部分、影响成本的因素、2025年建设A智算中心的成本估算及优化策略,
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f