- 关于claude怎么下载?请收下这份下载指南!
claude
Claude:下一代AI助手✨Claude是Anthropic公司开发的一款大型语言模型,被誉为下一代AI助手。它拥有强大的文本处理能力,能够进行对话、写作、翻译、总结等多种任务。一、Claude的产生:Claude的诞生源于Anthropic公司对构建安全、可靠且符合人类价值观的AI系统的追求❤️。该公司由前OpenAI研究人员创立,他们致力于解决大型语言模型潜在的安全和伦理问题️。Claude
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- Grok-3:人工智能领域的新突破
大模型之路
大模型(LLM)人工智能Grok-3llm
近日,xAI公司推出的最新AI模型——Grok-3,在ChatbotArena中一举夺魁,以破纪录的1402分傲视群雄,不仅刷新了大型语言模型(LLMs)的评分上限,更标志着AI技术的一次重大飞跃。本文将深入探讨Grok-3的技术突破、命名背后的深意、对AI领域的深远影响以及xAI公司的未来展望。一、Grok-3:技术突破与命名寓意Grok-3的横空出世,无疑给AI界带来了一场地震。它不仅在Cha
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- 使用 ChatGPT 构建 YouTube 下载器的分步指南
pxr007
chatgptpython开发语言
让我们使用ChatGPT的代码生成功能在Python中生成功能齐全的YouTube下载器应用程序,而无需自己编写一行代码!不相信这是可能的?只需按照本教程中的步骤操作......ChatGPT是OpenAI训练的大型语言模型,可以根据自然语言输入生成代码。如何安装PC机箱风扇这意味着您可以用简单的英语描述您想要实现的目标,ChatGPT将为您生成代码。在本教程中,我们将使用ChatGPT的此功能为
- 科普:大模型使用中的temperature 与 top-k及其它
人工干智能
大模型编程人工智能大模型
在大语言模型(如通过Ollama运行的llama2模型)中,temperature和top-k是两个用于控制文本生成过程的重要参数,它们在功能上相互独立,但又共同影响着模型生成文本的随机性和多样性。一、各自的作用temperature:该参数主要用于控制生成文本的随机性。它会对模型预测的词概率分布进行调整。具体来说,temperature值越高,概率分布就越平滑,各个词被选中的概率就越接近,生成文
- DeepSeek新作-Native Sparse Attention
数据分析能量站
机器学习人工智能
NSA概述长文本建模的重要性与挑战长文本建模的重要性:长文本建模对于下一代语言模型至关重要。这意味着模型需要能够处理和理解长篇幅的文本内容,例如长篇文章、书籍、复杂的对话等,这对于语言模型的推理、生成和理解能力提出了更高的要求。标准注意力机制的挑战:传统的注意力机制(如Transformer中的全注意力机制)在处理长文本时面临巨大的计算成本。这是因为全注意力机制需要计算每个词与其他所有词之间的关系
- Github 2024-04-29 开源项目周报 Top15
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本周(2024-04-29统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目11TypeScript项目3Go项目1Svelte项目1JupyterNotebook项目1Swift项目1Ollama:本地大型语言模型设置与运行创建周期:248天开发语言:Go协议类型:MITLicenseStar数量:4242
- 用示例提升大语言模型的查询分析能力!
llzwxh888
语言模型windows人工智能python
引言随着查询分析的复杂性增加,大语言模型(LLM)在理解如何响应某些场景时可能会面临挑战。为了提高性能,我们可以在提示中添加示例,以便更好地引导模型。本文将详细介绍如何为我们在Quickstart中构建的LangChainYouTube视频查询分析器添加示例,以优化其响应准确性。主要内容设置环境安装依赖项我们需要安装langchain-core和langchain-openai库。#%pipins
- 如何创建自定义Retriever来增强LLM应用程序
llzwxh888
服务器运维python
引言在许多大语言模型(LLM)应用中,我们需要从外部数据源中检索信息,以便生成更准确和相关的响应。这些信息往往通过Retriever模块检索,然后用于生成提示,供LLM进行处理和响应。在这篇文章中,我们将深入探讨如何创建一个自定义Retriever,并提供代码示例来帮助你在自己的项目中实现这一功能。主要内容Retriever接口要创建一个自定义Retriever,你需要扩展BaseRetrieve
- 第十节:通过Debug解析ChatGLMModel的数据流,理解视觉与语言模型结合架构
tangjunjun-owen
语言模型人工智能自然语言处理GLM-4v-9B多模态大模型教程ChatGLMModel
文章目录前言一、forward的参数解读二、图像编码token数量值方法解读三、input_ids的embedding方法解读1、embedding编码方法2、Embedding源码四、视觉编码方法解读五、inputs_embeds与position_ids编码加工方法解读1、inputs_embeds与position_ids编码方法2、图示解读编码方法3、inputs_embeds与posit
- LLM之提示词工程
樱花的浪漫
大模型与智能体人工智能自然语言处理知识图谱神经网络agent大模型
1.提示与提示工程提示工程作为一门新兴的学科,专注于开发和优化提示技术,旨在提升语言模型(LMs)在各种应用与研究主题中的效能。掌握提示工程技能对于深入理解大型语言模型(LLMs)的潜力与局限至关重要。研究人员借助提示工程,致力于增强LLM在广泛且复杂的任务(如问答系统与算术推理)中的表现。而对于开发人员而言,提示工程则成为设计高效、强大提示技术的关键,这些技术能够无缝对接LLM与其他工具,实现功
- LLaVA-CoT: Let Vision Language Models Reason Step-by-Step
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LLaVA-CoT:LetVisionLanguageModelsReasonStep-by-Step》的翻译。LLaVACoT:让视觉语言模型逐步推理摘要1引言2相关工作3提出的方法4后训练性能5推理时间缩放6最新VLMs的比较7结论摘要大型语言模型在推理能力方面取得了长足的进步,特别是通过推理时间缩放,如OpenAI的o1等模型所示。然而,当前的视觉语言模型(VLM
- 用 Python + LLM 实现一个智能对话
AGI大模型学习
python开发语言langchainprompt大模型AI大模型
大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。简介大语言模型LLM全称是LargeLanguageModels。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。所以LLM可以做以下事情:文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。智能对话系
- 大语言模型基础
MatrixSparse
大模型人工智能语言模型自然语言处理人工智能
简介AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型和多模态大模型,我将分别介绍它们的背景知识、关键技术、演进路线和挑战。什么是大语言模型大语言模型(LargeLanguageModel,LL
- 无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]1.简介MaxKB(MaxKnowledgeBase)是一款基于LLM大语言模型的开源知识库问答系统,1.1产品优势开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入:支持零编码快速嵌入到第三方业务系
- 2023-arXiv-FinGPT: 开源金融大语言模型
量仔搞靓化
金融大语言模型金融语言模型人工智能
arXiv|https://arxiv.org/abs/2306.06031GitHub|https://github.com/AI4Finance-Foundation/FinGPT&https://github.com/AI4Finance-Foundation/FinNLP摘要:大语言模型(LLMs)在多个领域展示出革新自然语言处理任务的潜力,这在金融领域引发了极大的兴趣。获取高质量的金融数
- 基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写
AAIshangyanxiu
chatgptpython机器学习深度学习
第一章2024大语言模型最新进展与ChatGPT各模型讲解1、2024AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)2、国内外大语言模型(ChatGPT4O、Gemini、Claude、Llama3、PerplexityAI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析3、OpenAI12天12场直播新功能解读与演示(ChatGPTO1
- 【有啥问啥】DeepSeek NSA(Native Sparse Attention):开启高效推理与降本增效的新篇章
有啥问啥
大模型人工智能算法
DeepSeekNSA(NativeSparseAttention):开启高效推理与降本增效的新篇章在人工智能领域,尤其是自然语言处理(NLP)和大语言模型(LLM)的浪潮中,性能与效率一直是研究者和开发者关注的焦点。随着模型规模的不断扩大,计算资源的需求呈指数级增长,这不仅带来了高昂的硬件成本,也对推理速度和实时性提出了严峻挑战。而DeepSeek团队提出的NSA(NativeSparseAtt
- 推理模型时代:大语言模型如何从对话走向深度思考?
深度学习机器
优质项目RAG大语言模型语言模型人工智能开源
一、对话模型和推理模型的区别概述对话模型是专门用于问答交互的语言模型,符合人类的聊天方式,返回的内容可能仅仅只是一个简短的答案,一般模型名称后面会带有「chat」字样。推理模型是比较新的产物,没有明确的定义,一般是指输出过程中带有和或其他表示思考过程的模型,在返回的内容中可以明确看到模型自身存在思考和反思行为。两者的区别可以概括如下:维度推理模型对话模型核心目标解决复杂逻辑推理、数学计算、因果推断
- 哪种LLM量化方法最适合您?:GGUF、GPTQ 还是 AWQ
GordonJK
人工智能机器学习深度学习
哪种LLM量化方法最适合您?:GGUF、GPTQ还是AWQ1.GGUF:(GPT-GeneratedUnifiedFormat,GPT生成的统一格式)GGUF是GGML的后继者,由llama.cpp团队推出。它是一种专为大型语言模型设计的量化方法。它允许用户在CPU上运行LLM,同时通过提供速度改进将一些层卸载到GPU。GGUF对于那些在CPU或Apple设备上运行模型的用户特别有用。在GGUF上
- 大模型应用开发的框架
红豆和绿豆
大模型大模型
一、大语言模型的几个框架1、python的版本langchainLangChain英文官方地址:https://www.langchain.com/LangChain中文官网:https://www.langchain.com.cn/Python官方地址:https://python.langchain.com/en/latest/LangChain源代码地址:https://github.com
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- 避坑指南:chatgpt账号购买成品号- chatgpt 4.0 plus成品号购买手册!
chatgpt
购买ChatGPT账号的注意事项及指南✨在当前人工智能技术快速发展的背景下,ChatGPT作为一种强大的语言模型工具️,受到了广泛关注。然而,在获取ChatGPT账号的过程中,用户需审慎考虑多项关键因素,以确保所购账号的安全、可靠及合法性✅,规避潜在风险⚠️。本文将深入探讨购买ChatGPT账号时需重点关注的几个方面,并提供相关建议。1.账号来源审查️♂️账号来源是决定其安全性和可靠性的首要因素
- AI 模型的优化与应用:大模型本体、蒸馏、量化 与 GGUF
CCSBRIDGE
人工智能人工智能
引言近年来,大型语言模型(LLM)在人工智能领域取得了突破性的进展,但其计算需求高昂,训练和推理成本巨大。因此,如何优化大模型,使其在不同设备和应用场景下更高效地运行,成为了AI研究的重要课题。本文将探讨大模型本体(FullModel)、蒸馏(Distillation)、量化(Quantization)和GGUF(GPT-GeneratedUnifiedFormat)等优化技术,并分析它们的区别、
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- 小型字符级语言模型的改进方向和策略
搏博
语言模型人工智能自然语言处理python深度学习
小型字符级语言模型的改进方向和策略一、回顾小型字符级语言模型的处理流程前文我们已经从零开始构建了一个小型字符级语言模型,那么如何改进和完善我们的模型呢?有哪些改进的方向?我们先回顾一下模型的流程:图1小型字符级语言模型的处理流程(1)核心模块交互过程:嵌入层↔位置编码→解码器堆栈→输出投影。(2)训练优化设计:增加自动恢复训练进度的检查点管理;增加block_size校验、保存间隔控制等条件判断。
- 谷歌:缓存增强优化冻结LLM的推理性能
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:DeliberationinLatentSpaceviaDifferentiableCacheAugmentation来源:arXiv,2412.17747摘要通过生成和处理中间推理步骤,使大型语言模型(LLM)能够“思考更多”的技术在解决复杂问题方面显示出了希望。然而,标准方法在响应之前立即生成离散令牌序列,因此它们可能会产生巨大的延迟成本,并且难以优化。在这项工作中,我们证明了冻结的LL
- 【AI-32】浅显易懂地说一下LangChain
W Y
人工智能langchain
好的!我来用最通俗的方式解释一下LangChain是什么,以及它为什么在AI开发中如此重要。一句话理解LangChainLangChain是一个帮你快速搭建AI应用的工具箱,它把大型语言模型(如GPT)和外部数据、计算工具、业务流程连接起来,让开发AI应用像搭积木一样简单。类比:想象你要造一辆车,LangChain就是提供现成的引擎、方向盘、轮子(模块化组件),你只需组装它们,而不用从零开始炼钢造
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http