使用 Python 的 LSTM 进行股市预测

目录

一、说明

二、为什么需要时间序列模型?

三、下载数据

3.1 从 Alphavantage 获取数据

3.1 从 Kaggle 获取数据

3.3 数据探索

3.4 数据可视化

四、将数据拆分为训练集和测试集

五、数据标准化

六、通过平均进行一步预测

6.1 标准平均值

6.2 指数移动平均线

6.3 如果指数移动平均线这么好,为什么还需要更好的模型?

6.4 预测未来不止一步

七、LSTM 简介:预测未来的股票走势

7.1 数据生成器

7.2 数据增强

7.3 定义超参数

7.4 定义输入和输出

7.5 定义 LSTM 和回归层的参数

7.6 计算 LSTM 输出并将其馈送到回归层以获得最终预测

7.7 损失计算和优化器

7.9 运行 LSTM

八、可视化预测

九、最后的评论

参考


一、说明

         在本教程中,您将了解如何使用称为长短期记忆的时间序列模型。 LSTM 模型非常强大,尤其是在设计上保留长期记忆,正如您稍后将看到的。您将在本教程中解决以下主题:

你可能感兴趣的:(数据分析,深度学习,人工智能综合,python,lstm,开发语言)