难度:☆2
注意链表节点(ListNode)的类和构造函数怎么写。
如果头节点需要移除/如果头节点不需要移除。注意,用while判断头节点是否为val,而且在while中条件判断head和cur是否存在。
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
while head and head.val == val:
head = head.next
cur = head
while cur and cur.next:
if cur.next.val == val:
cur.next = cur.next.next
else:
cur = cur.next
return head
为了方便解决头节点就是目标节点的情况,设置一个虚拟头节点(哑节点 dummyHead),代码可以统一。
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
dummyHead = ListNode(next=head)
cur = dummyHead
while cur.next:
if cur.next.val == val:
cur.next = cur.next.next
else:
cur = cur.next
return dummyHead.next
以上都是迭代法,还可以用递归法解决本题。
class Solution:
def removeElements(self, head: ListNode, val: int) -> ListNode:
if head is None:
return head
head.next = self.removeElements(head.next, val)
return head.next if head.val == val else head
难度:☆3
设置一个虚拟头节点(哑节点 dummyHead),设置一个计数器记录当前节点总数。自行创建一个ListNode类。不妨假设4个节点,index=3方便判断循环终止条件,也可以用index=0作为极端条件直接判断。注意类的属性和方法要写清self,漏写必然会报错。
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
class MyLinkedList:
def __init__(self):
self._dummyHead = ListNode()
self._count = 0
def get(self, index: int) -> int:
if index < 0 or index >= self._count:
return -1
cur = self._dummyHead
while index >= 0:
cur = cur.next
index -= 1
return cur.val
def addAtHead(self, val: int) -> None:
self.addAtIndex(0, val)
def addAtTail(self, val: int) -> None:
self.addAtIndex(self._count, val)
def addAtIndex(self, index: int, val: int) -> None:
if index <= 0:
addNode = ListNode(val, self._dummyHead.next)
self._dummyHead.next = addNode
self._count += 1
elif index > 0 and index <= self._count:
cur = self._dummyHead
while index > 0:
cur = cur.next
index -= 1
addNode = ListNode(val, cur.next)
cur.next = addNode
self._count += 1
def deleteAtIndex(self, index: int) -> None:
if index >= 0 and index < self._count:
cur = self._dummyHead
while index > 0:
cur = cur.next
index -= 1
cur.next = cur.next.next
self._count -= 1
每个节点既有前驱,又有后继,方便增、删、查的函数选择从头开始还是从尾开始。用时更少,但前驱、后继的操作更多。
难度:☆3
双指针前后间隔为1,不是2,共同向前。让cur指向的节点指向pre指向的节点。注意要用一个临时变量temp存储cur的下一个节点,之后再赋值给cur。cur初始为头节点,pre初始为None。
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
# 迭代法 前后双指针
cur = head
pre = None
while cur:
temp = cur.next
cur.next = pre
pre = cur
cur = temp
return pre
根据双指针法的思路,设计一个递归函数,不断让cur指向pre,当cur为空的时候结束。在递归法中,初始化的逻辑和双指针法是一样的:cur = head,pre = None,写法不同。
class Solution:
# 递归法
def reverseList(self, head: ListNode) -> ListNode:
return self.reverse(head, None)
def reverse(self, cur, pre):
if cur is None:
return pre
temp = cur.next
cur.next = pre
return self.reverse(temp, cur)
假设链表的其余部分已经被反转,现在应该如何反转它前面的部分?若从节点 nk+1 到 nm 已经被反转,而我们正处于 nk,我们希望 nk+1 的下一个节点指向 nk:nk.next.next = nk。需要注意的是 n1 的下一个节点必须指向None。
class Solution:
def reverseList(self, head: ListNode) -> ListNode:
if not head or not head.next:
return head
newHead = self.reverseList(head.next)
head.next.next = head
head.next = None
return newHead