图神经网络实战(2)——图论基础

图神经网络实战(2)——图论基础

    • 0. 前言
    • 1. 图属性
      • 1.1 有向图和无向图
      • 1.2 加权图和非加权图
      • 1.3 连通图和非连通图
      • 1.4 其它图类型
    • 2. 图概念
      • 2.1 基本对象
      • 2.2 图的度量指标
      • 2.2 邻接矩阵表示法
    • 3. 图算法
      • 3.1 广度优先搜索
      • 3.2 深度优先搜索
    • 小结
    • 系列链接

0. 前言

图论 (Graph theory) 是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建模和分析现实问题的工具,如交通系统、社交网络和互联网等。
在本节中,将介绍图论的基本原理,主要涉及三个方面:图属性、图概念和图算法。首先,我们将定义图及其组成部分;然后,我们将介绍不同类型的图,并分析它们的属性和应用。接下来,我们将介绍基本的图概念,包括邻接矩阵等;最后,将深入介绍图算法,重点包括广度优先搜索 (breadth-first search, BFS) 和深度优先搜索 (depth-first search, DFS)。

1. 图属性

在图论中,图 (Graph) 是一种数学结构,由一组对象(称为顶点或节点)和一组连接顶点对的连接(称为边)组成。使用符号 G &

你可能感兴趣的:(图神经网络从入门到项目实战,神经网络,图论,图神经网络,GNN)