大模型RAG应用开发之PDF解析工具对比

一 汇总

类型 名称 地址 OCR 提取表格内容 保留文本顺序 提取图片 保存成md格式 其他特性
传统PDF解析库 pymupdf https://github.com/pymupdf/PyMuPDF ✔️ ✔️ ✔️ ● 表格提取
● 自定义字体
传统PDF解析库 pdfminer https://github.com/pdfminer/pdfminer.six ✔️ ● 版面分析
传统PDF解析库 pdfplumber https://github.com/jsvine/pdfplumber ✔️ ● 表格提取,但存在丢失列的问题
传统PDF解析库 pypdf2 https://github.com/py-pdf/pypdf ✔️ ● pdf合并与拆分
● 添加水印
基于模型的PDF解析一体库 llama-parse https://github.com/run-llama/llama_parse ✔️ ✔️ ✔️ ✔️ ✔️ ● 付费API每天有免费额度
基于模型的PDF解析一体库 open-parse https://github.com/Filimoa/open-parse ✔️ ✔️ ✔️ ✔️ ● 文本支持保存markdown和html格式
●内置表格模型,可自由选择
●表格带markdown格式
基于模型的PDF解析一体库 deepdoc https://github.com/infiniflow/ragflow/tree/main/deepdoc ✔️ ✔️ ✔️ ✔️ ● 支持版面分析
●表格带html格式
基于模型的PDF解析一体库 MinerU https://github.com/opendatalab/MinerU/tree/master ✔️ ✔️ ✔️ ✔️ ✔️ ● 文本带markdown格式
● 解析保留中间过程,可用于二次调优
● 表格提取非常慢,目前效果一般

二 总结

  • 非扫描件无OCR要求直接使用pymupdf(fitz)即可,能正确保留双列布局的文本顺序,同时能提取表格和图片,而且表格是以List的格式保留。
  • 其余几个传统的PDF解析库倾向于对pdf进行编辑,比如添加水印,增加或者删除页面等。
  • llama-parse 中文文档效果不好,而且还是通过API使用,但是每天有固定的免费额度,可以用于处理扫描件。
  • deepdocMinerU是近期开源项目中比较强大的RAG解析工具。deepdoc优势点在于表格效果较好,亲测无边框的表格有大多数效果仍可圈可点,并且保留为html格式,因此允许合并单元格;MinerU优势在于识别的文本带有markdown格式,因此用于RAG切分文档中可以省去不少功夫。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 有需要的小伙伴,可以 扫描下方二维码领取↓↓↓

CSDN大礼包:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 有需要的小伙伴,可以 扫描下方二维码领取↓↓↓

CSDN大礼包:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)

你可能感兴趣的:(pdf,langchain,人工智能,llama,LLM,自然语言处理,RAG)