判断点及线段是否在多边形内

昨天小学了一点计算几何学的内容,想把它记下来,以便以后翻阅。

1.判断点是否在多边形中

先说一下思路:

判断点(P)是否在多边形中,可以先以点p向左引一条射线(L),我们知道,从射线L左端的无穷远处开始一直到点P的过程中,当遇到多边形的第一个交点时L进入了多边形,当遇到第二个交点时,L穿出了多边形。。。。。。。。。可知,规律如下,当在遇到P点之前L与多边形的交点为偶数个时,说明p点不在多边形内,当在遇到p点之前L与多边形得交点为奇数个时,说明P点在多边形内。

但是,这个规律并不具有普遍性,还有几种特殊情况不满足此规律,需要额外考虑:

(1)当点P在多边形的某条边上时,可以直接判断其在多边形中。

(2)对于多边形的水平边不作考虑。

(3)对于多边形的顶点与L相交,则需要判断该顶点是否为顶点所在的边的那个纵坐标较大的顶点,如果是较大的那个顶点与L相交则计数,否则忽略。

伪代码如下:

........fun()

{

     int count=0;

     //以P为端点从右向左引一条射线L 

     for(多边形的每一条边S)//遍历多边形的每一条边 

     {

          if(P在边S上)

          {

               return ture; 

          } 

          if(S不是水平的)

          {

                if(S的一个端点在L上)

                {

                      if(该端点是S的较大端点)

                      {

                            count++; 

                      }                    

                }               

                else if(S与L相交)

                {

                      count++;

                } 

          } 

     } 

     if(count%2==0)

     {

           return false;

     }

     else

     {

           return true;

     }

}

2.判断线段是否在多边形内

思路:(1)首先,要判断一条线段是否在多边形内,先要判断线段的两个端点是否在多边形内。如果两个端点不全在多边形内,那么,线段肯定是不在多边形内的。

        (2)其次,如果线段和多边形的某条边内交(两线段内交是指两线段相交且交点不在两线段的端点),则线段肯定不在多边形内。

        (3)如果多边形的某个顶点和线段相交,则必须判断两相交交点之间的线段是否包含于多边形内。

伪代码:

if(线段PQ的端点不都在多边形内)

{

     return false;                              

} 

点集pointSet初始化为空;

for(多边形的每一条边S)

{

     if(线段的某个端点在S上)

     {

           将该端点加入pointSet;                       

     }                      

     else if(S的某个端点在线段PQ上)

     {

           将该端点加入pointSet;     

     } 

     else if(线段PQ与S相交)

     {

          return false;//此时可以判断是内交了     

     } 

} 

将pointSet中的点按照X-Y坐标排序;

for(pointSet中每两个相邻点pointSet[i],pointSet[i+1])

{

     if(pointSet[i],pointSet[i+1]的中点不在多边形中)

     {

          return false;                                               

     }                                                    

} 

return true;

你可能感兴趣的:(判断)