- 基于Python的京东商品信息采集实战:用Playwright+Pandas打造高效数据抓取工具
Python爬虫项目
2025年爬虫实战项目pythonpandas开发语言爬虫游戏笔记
一、项目背景与目标在当今电商生态中,价格、销量、评论等商品信息对用户和商家来说至关重要。无论是做数据分析、电商监控,还是构建商品推荐系统,第一步都是:获取真实的商品数据。本项目以京东商城搜索结果页为目标,通过构建一个高效、可复用的商品信息采集爬虫系统,实现对商品名称、价格、店铺、评论数、链接等核心信息的提取。二、技术路线概述我们采用如下技术架构:模块技术选型浏览器自动化Playwright(现代、
- 助力您发SCI 机器学习(ML)在材料领域应用专题
YEcenfei
分子动力学催化材料机器学习人工智能python
第一天机器学习在材料与化学常见的方法理论内容1.机器学习概述2.材料与化学中的常见机器学习方法3.应用前沿实操内容Python基础1.开发环境搭建2.变量和数据类型3.列表4.if语句5.字典6.For和while循环实操内容Python基础(续)1.函数2.类和对象3.模块Python科学数据处理1.NumPy2.Pandas3.Matplotlib第二天机器学习材料与化学应用<
- 从Python到数据结构:为什么这是每个自学者必经的进阶之路
流水煮香茗
python数据结构mooc
当你熟练掌握Python语法后,下一步应该学什么?答案是数据结构。本文将深入分析为什么数据结构是编程进阶的关键,以及如何选择合适的学习资源。一、Python学会了,然后呢?如果你正在读这篇文章,很可能你已经:用Python写过小工具,能解决工作和生活中的一些小需求做过数据分析,会用pandas处理Excel表格但是,当你想要进一步提升时,却发现了一些困惑:困惑1:代码能跑,但总觉得"不够优雅"你的
- 【python】pip 国内镜像源
叶阿猪
pythonpythonpip开发语言
使用pip下载安装python第三方库的时候,经常会很慢,甚至报错。如下:pip._vendor.urllib3.exceptions.ReadTimeoutError:HTTPSConnectionPool(host='f而使用Python的镜像源(也称为国内安装源或PyPI镜像源)可以提高Python包(如numpy、pandas等)的安装速度和稳定性。Python的镜像源是在国内设置的代理服
- 【数据挖掘】分类算法学习—ID3
会的全对٩(ˊᗜˋ*)و
数据挖掘数据挖掘分类学习经验分享ID3
分类算法学习—ID3ID3(IterativeDichotomiser3)是一种经典的决策树学习算法,由RossQuinlan于1986年提出,主要用于处理离散特征的分类问题。其核心思想是通过信息增益选择最优特征进行节点分裂,递归构建决策树。要求:理解并掌握ID3算法,理解算法的原理,能够实现算法,并对给定的数据集进行分类,分析个人参股的情况代码实现:importpandasaspdimportn
- PAT A1052 Linked List Sorting C++ 主要的坑
sisi-mia
PAT甲级算法c++学习pat考试
Alinkedlistconsistsofaseriesofstructures,whicharenotnecessarilyadjacentinmemory.WeassumethateachstructurecontainsanintegerkeyandaNextpointertothenextstructure.Nowgivenalinkedlist,youaresupposedtosortt
- 1052. Linked List Sorting (25)
陈小旭
PAT
题目链接:http://www.patest.cn/contests/pat-a-practise/1052题目:Alinkedlistconsistsofaseriesofstructures,whicharenotnecessarilyadjacentinmemory.WeassumethateachstructurecontainsanintegerkeyandaNextpointertot
- Python Pandas 如何进行数据分组统计
Python编程之道
Python人工智能与大数据Python编程之道pythonpandas网络ai
PythonPandas如何进行数据分组统计关键词:PythonPandas、数据分组、groupby、聚合函数、数据透视表、数据统计、数据分析摘要:本文将深入探讨如何使用PythonPandas库进行高效的数据分组统计操作。我们将从基础概念入手,详细讲解groupby机制的原理和使用方法,介绍各种聚合函数的应用,探讨高级分组技巧,并通过实际案例展示如何解决复杂的数据分析问题。文章还将涵盖性能优化
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- Python_计算两个省市之间的直线距离_2506
夏天里的肥宅水
PYTHONpythonspring开发语言
更新代码上一版链接importpandasaspdimporttimeimportpickleimportosimportsysfromgeopy.geocodersimportNominatimfromgeopy.distanceimportgeodesicfromtqdmimporttqdm#ConfigurationINPUT_FILE=r"距离.xlsx"#输入文件路径OUTPUT_FIL
- 技术调研:时序数据库(一)
myskybeyond
时序数据库时序数据库数据库
选择时序数据库时,选择当下主流的解决方案。目前主流的开源解决方案有InfluxDB、TDengine和TimescaleDB。下文从多个维度对比分析,最终根据需求做出选型决策。1.核心架构与设计理念数据库架构特点核心优势InfluxDB-专为时序数据设计的分布式数据库-基于时间线(TimeSeries)模型-开源版(OSS)与商业版(Cloud/Enterprise)功能差异大高写入吞吐量、原生支
- 【Python常用模块】_Pandas模块3-DataFrame对象
失心疯_2023
Python常用模块数据分析pandas数据挖掘python数据统计数据处理
课程推荐我的个人主页:失心疯的个人主页入门教程推荐:Python零基础入门教程合集虚拟环境搭建:Python项目虚拟环境(超详细讲解)PyQt5系列教程:PythonGUI(PyQt5)教程合集Oracle数据库教程:Oracle数据库教程合集MySQL数据库教程:MySQL数据库教程合集优质资源下载:资源下载合集
- 【Pandas】pandas DataFrame resample
liuweidong0802
DataFramepandas
Pandas2.2DataFrameTimeSeries-related方法描述DataFrame.asfreq(freq[,method,how,…])用于**将时间序列数据转换为指定频率(resampletofrequency)**的方法DataFrame.asof(where[,subset])用于查找时间序列中最接近指定时间点的非NaN值的方法DataFrame.shift([period
- 【Pandas】pandas DataFrame max
liuweidong0802
DataFramepandaspython数据挖掘
Pandas2.2DataFrameComputationsdescriptivestats方法描述DataFrame.abs()用于返回DataFrame中每个元素的绝对值DataFrame.all([axis,bool_only,skipna])用于判断DataFrame中是否所有元素在指定轴上都为TrueDataFrame.any(*[,axis,bool_only,skipna])用于判断
- 【Pandas】pandas Series tz_convert
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesTimeSeries-related方法描述Series.asfreq(freq[,method,how,…])用于将时间序列数据转换为指定的频率Series.asof(where[,subset])用于返回时间序列中指定索引位置的最近一个非缺失值Series.shift([periods,freq,axis,…])用于将时间序列数据沿指定轴移动指定的周期数Serie
- Python打卡:Day24
剑桥折刀s
python打卡python
importpandasaspdimportnumpyasnpimportreimportxgboostasxgbfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_report,confusion_matrix,accuracy_score,precision_score
- 国产信创电脑如何查看IP地址、网关、DNS等信息
yeliuxiaozi
tcp/ip服务器网络协议
我的是清华同方TF830,可以直接使用命令查看!右击桌面,打开终端,键入命令nmclidevshow文章来自:https://techzhi.com/7.htmsxszf@sxszf-CX-TF830-Series:~/桌面$nmclidevshowGENERAL.设备:enp125s0f1GENERAL.类型:ethernetGENERAL.硬盘:F4:DE:AF:AD:8B:BEGENERAL
- 常见的结构化数据 转化为 字典列表
daoboker
python
以下是针对CSV、Parquet、Excel等格式使用pandas统一处理,并将每一行转换为字典的整理方案:一、通用处理逻辑无论何种数据格式,核心步骤均为:用pandas读取为DataFrame将DataFrame转换为列表+字典格式(orient=‘records’)二、具体实现代码CSV→字典列表importpandasaspd#读取CSVdf=pd.read_csv('data.csv',s
- Python爬虫(56)Python数据清洗与分析实战:Pandas+Dask双剑合璧处理TB级结构化数据
一个天蝎座 白勺 程序猿
Python爬虫入门到高阶实战python爬虫pandas
目录引言:大数据时代的清洗革命一、数据清洗基础:Pandas核心方法论1.1数据去重策略深度解析1.1.1精确去重与模糊去重1.1.2智能去重策略1.2缺失值处理金字塔模型1.2.1基础处理方法1.2.2智能缺失处理二、Dask架构解析:突破单机内存限制2.1Dask核心组件图谱2.2DaskDataFrame核心API映射表三、TB级数据清洗实战:电商订单数据分析3.1场景描述3.2分布式清洗流
- Pandas 系列(二)
毛大猫(蓉火科技)
pandas
Pandas系列(二):Series属性(一):importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt使用matplotlib.pyplot进行绘图时,首先需要导入模块,并根据具体需求调用相关函数来生成图表。通常使用以下语句:importmatplotlib.pyplotasplt导入pyplot模块,并将其简称为plt#s10=pd
- DeepSeek在数据分析与科学计算中的革命性应用
软考和人工智能学堂
#DeepSeek快速入门Python开发经验#深度学习python机器学习开发语言
1.数据预处理自动化1.1智能数据清洗fromdeepseekimportDataCleanerimportpandasaspddefauto_clean_data(df):cleaner=DataCleaner()analysis=cleaner.analyze(df)print("数据问题诊断:")forissueinanalysis['issues']:print(f"-{issue['ty
- python pandas数据清洗
扶子
python开发语言经验分享pandas数据清洗
一、介绍:2024金砖python样题中数据清洗部分代码实现二、任务要求:数据集中有购药时间、社保卡号、商品编码、商品名称、销售数量、应收金额、实收金额几个字段,请你使用NumPy和Pandas按如下要求对数据进行清洗:1.购药时间就是销售时间,为了后续分析更好的理解字段,将"购药时间"改为"销售时间";2.任何一条数据中只要有一个缺失值就删除该条数据;3.将销售数量、应收金额、实收金额三列的数据
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- 对 Boston Housing Dataset(波士顿房价数据集)数据分析
程序小K
数据分析数据分析数据挖掘
1.数据加载与初步检查importpandasaspdimportmatplotlib.pyplotaspltimportseabornassns#加载数据boston_df=pd.read_csv("boston_housing_data.csv")#查看前5行display(boston_df.head())#检查数据基本信息(列名、数据类型、非空值数量)print(boston_df.inf
- “易问易视”——让数据分析像聊天一样简单
二十十十十十
数据分析数据挖掘
一、项目简介“易问易视”通过自然语言理解和大语言模型技术,将用户的中文查询自动转化为数据处理指令,实现无代码的数据检索与图表生成。你只要在大屏上输入一句话,比如“2024年每月有多少人出境”,它就能自动看懂你要查的时间、指标、维度,然后在后台用Pandas和NumPy把国家统计局或行业CSV里的数据清洗、筛选、聚合好,再用Matplotlib、Plotly画出柱状图、折线图、饼图甚至地图,最后在S
- Python 数据分析与可视化 Day 3 - Pandas 数据筛选与排序操作
蓝婷儿
pythonpandas数据分析python
今日目标掌握DataFrame的条件筛选(布尔索引)学会多条件筛选、逻辑运算熟练使用排序(sort_values)提升数据组织力结合列选择进行数据提取分析一、列选择与基本筛选✅选择单列/多列df["成绩"]#返回Seriesdf[["姓名","成绩"]]#返回新的DataFrame✅条件筛选(布尔索引)#筛选出成绩大于80的学生df[df["成绩"]>80]#获取性别为“女”的学生df[df["性
- 7a系列mrcc xilinx_Xilinx 7 Series FPGA!型号列表
Xilinx7SeriesFPGA型号列表SupportedDevice(1),(2)CoreVersionSignalingEnvironmentVirtex-5XC5VFX70T-FF1136-2C/I(3)(regionalclock)v43.3VonlyVirtex-5XC5VLX50-FF1153-2C/I(3)(regionalclock)v43.3VonlyVirtex-5XC5VL
- 金融量化 - 技术分析策略和交易系统_SMA+CCI交易系统
帅泽泽
金融量化金融量化
双技术指标:SMA+CCI交易系统以SMA作为开平仓信号,同时增加CCI作为过滤器;当股价上穿SMA,同时CCI要小于-100,说明是在超卖的情况下,上穿SMA,做多;交易信号更可信;当股价下穿SMA,同时CCI要大于+100,说明是在超买的情况下,下穿SMA,做空;交易信号更可信;importnumpyasnpimportpandasaspdimporttalibastaimporttushar
- Python学习Day10
m0_64472246
python打卡学习python
学习来源:@浙大疏锦行知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估对心脏病数据集采用机器学习模型建模和评估importpandasaspdfile_path="heart.csv"data=pd.read_csv(file_path)data.info()data.isnull().sum()#划分训练集和测试机fromsklearn.model_selectionim
- Python训练打卡Day15
编程有点难
Python学习笔记python开发语言
复习日回顾一下之前14天的内容:importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltdata=pd.read_csv('ObesityDataSet.csv')data.head()#分离连续变量与离散变量discrete_features=['Gender','family_history_with_overweight',
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite