Streaming ELT 同步 MySQL 到 StarRocks

Streaming ELT 同步 MySQL 到 StarRocks

这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 到 StarRocks 的 Streaming ELT 作业,包含整库同步、表结构变更同步和分库分表同步的功能。
本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

准备阶段

准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。

准备 Flink Standalone 集群

下载 Flink 1.18.0 ,解压后得到 flink-1.18.0 目录。
使用下面的命令跳转至 Flink 目录下,并且设置 FLINK_HOME 为 flink-1.18.0 所在目录。

cd flink-1.18.0
通过在 conf/flink-conf.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

execution.checkpointing.interval: 3000

使用下面的命令启动 Flink 集群。

./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/ 访问到 Flink Web UI,如下所示:

Flink UI
多次执行 start-cluster.sh 可以拉起多个 TaskManager。

准备 Docker 环境

使用下面的内容创建一个 docker-compose.yml 文件:

version: '2.1'
services:
  StarRocks:
    image: starrocks/allin1-ubuntu:3.2.6
    ports:
      - "8080:8080"
      - "9030:9030"
  MySQL:
    image: debezium/example-mysql:1.1
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=123456
      - MYSQL_USER=mysqluser
      - MYSQL_PASSWORD=mysqlpw

该 Docker Compose 中包含的容器有:

MySQL: 包含商品信息的数据库 app_db
StarRocks: 存储从 MySQL 中根据规则映射过来的结果表
在 docker-compose.yml 所在目录下执行下面的命令来启动本教程需要的组件:

docker-compose up -d

该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问 http://localhost:8030/ 来查看 StarRocks 是否运行正常。

在 MySQL 数据库中准备数据

进入 MySQL 容器

docker-compose exec MySQL mysql -uroot -p123456

创建数据库 app_db 和表 orders,products,shipments,并插入数据

-- 创建数据库
CREATE DATABASE app_db;

USE app_db;

-- 创建 orders 表
CREATE TABLE `orders` (
`id` INT NOT NULL,
`price` DECIMAL(10,2) NOT NULL,
PRIMARY KEY (`id`)
);

-- 插入数据
INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);

-- 创建 shipments 表
CREATE TABLE `shipments` (
`id` INT NOT NULL,
`city` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);

-- 插入数据
INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');

-- 创建 products 表
CREATE TABLE `products` (
`id` INT NOT NULL,
`product` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);

-- 插入数据
INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

通过 FlinkCDC cli 提交任务

下载下面列出的二进制压缩包,并解压得到目录 flink-cdc-3.0.0:
flink-cdc-3.0.0-bin.tar.gz flink-cdc-3.0.0 下会包含 bin、lib、log、conf 四个目录。

下载下面列出的 connector 包,并且移动到 lib 目录下
下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地基于 master 或 release- 分支编译

MySQL pipeline connector 3.0.0
StarRocks pipeline connector 3.0.0
编写任务配置 yaml 文件
下面给出了一个整库同步的示例文件 mysql-to-starrocks.yaml:

################################################################################
# Description: Sync MySQL all tables to StarRocks
################################################################################
source:
  type: mysql
  hostname: localhost
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: starrocks
  name: StarRocks Sink
  jdbc-url: jdbc:mysql://127.0.0.1:9030
  load-url: 127.0.0.1:8080
  username: root
  password: ""
  table.create.properties.replication_num: 1

pipeline:
  name: Sync MySQL Database to StarRocks
  parallelism: 2

其中:

source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。
sink 添加 table.create.properties.replication_num 参数是由于 Docker 镜像中只有一个 StarRocks BE 节点。
最后,通过命令行提交任务到 Flink Standalone cluster

bash bin/flink-cdc.sh mysql-to-starrocks.yaml

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: 02a31c92f0e7bc9a1f4c0051980088a0
Job Description: Sync MySQL Database to StarRocks
在 Flink Web UI,可以看到一个名为 Sync MySQL Database to StarRocks 的任务正在运行。
Streaming ELT 同步 MySQL 到 StarRocks_第1张图片

MySQL-to-StarRocks
通过数据库连接工具例如 Dbeaver 等连接到 jdbc:mysql://127.0.0.1:9030, 可以查看 StarRocks 中写入了三张表的数据。

Streaming ELT 同步 MySQL 到 StarRocks_第2张图片

同步变更

进入 MySQL 容器:

 docker-compose exec mysql mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,StarRocks 中显示的订单数据也将实时更新:

在 MySQL 的 orders 表中插入一条数据

INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);

在 MySQL 的 orders 表中增加一个字段

ALTER TABLE app_db.orders ADD amount varchar(100) NULL;

在 MySQL 的 orders 表中更新一条数据

UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;

在 MySQL 的 orders 表中删除一条数据

DELETE FROM app_db.orders WHERE id=2;

通过连接工具,我们可以看到 StarRocks 上也在实时发生着这些变更:StarRocks-display-result
Streaming ELT 同步 MySQL 到 StarRocks_第3张图片

同样的,去修改 shipments, products 表,也能在 StarRocks 中实时看到同步变更的结果。

路由变更

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。
下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to StarRocks
################################################################################
source:
  type: mysql
  hostname: localhost
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
   type: starrocks
   name: StarRocks Sink
   jdbc-url: jdbc:mysql://127.0.0.1:9030
   load-url: 127.0.0.1:8030
   username: root
   password: ""
   table.create.properties.replication_num: 1

route:
  - source-table: app_db.orders
    sink-table: ods_db.ods_orders
  - source-table: app_db.shipments
    sink-table: ods_db.ods_shipments
  - source-table: app_db.products
    sink-table: ods_db.ods_products

pipeline:
  name: Sync MySQL Database to StarRocks
  parallelism: 2

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 ods_db.ods_orders 中。从而实现数据库迁移的功能。
特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

   route:
     - source-table: app_db.order\.*
       sink-table: ods_db.ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 ods_db.ods_orders 中。注意,目前还不支持多表中存在相同主键数据的场景,将在后续版本支持。

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.18.0 下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

详情参考:https://nightlies.apache.org/flink/flink-cdc-docs-release-3.0/zh/docs/get-started/quickstart/mysql-to-starrocks/

你可能感兴趣的:(大数据,mysql,数据库)